荷木对干湿季土壤水分的利用和适应性调节
作者:
作者单位:

中国科学院华南植物园;中国科学院大学,中国科学院华南植物园;广东省应用植物学重点实验室,中国科学院华南植物园;广东省应用植物学重点实验室,中国科学院华南植物园;广东省应用植物学重点实验室,中国科学院华南植物园;广东省应用植物学重点实验室,中国科学院华南植物园;广东省应用植物学重点实验室

基金项目:

国家自然科学基金(41630752,31670410,41030638)资助


Soil Water Use and Adaptive Regulation of Schima superba in the Dry and Wet Seasons
Author:
Affiliation:

South China Botanical Garden,Chinese Academy of Sciences;University of Chinese Academy of Sciences,South China Botanical Garden,Chinese Academy of Sciences;Guangdong Provincial Key Laboratory of Applied Botany,South China Botanical Garden,Chinese Academy of Sciences;Guangdong Provincial Key Laboratory of Applied Botany,South China Botanical Garden,Chinese Academy of Sciences;Guangdong Provincial Key Laboratory of Applied Botany,South China Botanical Garden,Chinese Academy of Sciences;Guangdong Provincial Key Laboratory of Applied Botany,South China Botanical Garden,Chinese Academy of Sciences;Guangdong Provincial Key Laboratory of Applied Botany

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [38]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了解荷木对土壤水分利用的干湿季差异,利用热消散探针法(TDP)连续监测荷木(Schima superba)液流密度(Js),基于测定的叶片水势(ΨL)、叶面积指数(LAI)及胡伯尔值(AS:AL)等参数,结合同步监测的环境因子,分析整树水力导度(KL)、冠层气孔导度(GS)和蒸腾有效储存水量(Q)的干湿季变化。结果表明,干季荷木林出现土壤水分亏缺,使荷木对水分吸收和传输的阻力增加。但GS对水汽压亏缺(VPD)的敏感性较高,使干湿季正午叶片水势(ΨL-mid)、土壤-叶片水势差(ΔΨS-L)保持相对稳定;干季荷木通过降低LAI、KL和GS有效调控蒸腾;增加Q对日蒸腾的贡献率及单位叶面积的Q以部分补偿水分胁迫。这些适应性调节使荷木在光热资源仍然充足的干季保持旺盛的蒸腾活动,维持与湿季相似的单位叶面积蒸腾量。因此,KL和GS的调节作用、Q的水力补偿效应以及自身水力特征在一定程度上解释了荷木干湿季单位叶面积的水分利用呈常数状态,并且SWC对蒸腾无明显的限制作用的原因。

    Abstract:

    In order to understand the difference in soil water use of Schima superba in dry and wet seasons, the sap flux densities (Js) of S. superba were continually monitored using Granier's thermal dissipation probes (TDP). Based on the measurements of leaf water potential (ΨL), parameters of hydraulic structures, such as leaf area index (LAI), and Huber value (AS:AL), in combination of the synchronized monitoring environment factors, the dry/wet seasonal changes in whole-tree hydraulic conductance (KL), canopy stomatal conductance (GS) and effective water storage for transpiration (Q) of S. superba were analyzed. The results showed that the soil water deficit in the dry season increased the resistance of water absorption and transpiration of S. superba. However, the GS of S. superba was sensitive to the vapor pressure deficit (VPD) to keep midday leaf water potential (ΨL-mid), water potential gradient between leaves and the soil (ΔΨS-L) in dry and wet seasons. Moreover, the LAI、KL and GS of S. superba decreased to effectively regulate transpiration in the dry season. Meanwhile, the high contribution of effective water storage for transpiration (Q) to daily transpiration and Q per unit leaf area in the dry season would partially compensate the water stress. Since the S. superba plantation could maintain a vigorous transpiration with those adaptive regulations in the dry season during which it still had sufficient solar and thermal resources in south China, the whole-tree water use per unit leaf area of S. superba in the dry seasons was kept similar to that in wet seasons. Therefore, it was suggested that the regulating of KL and GS, the hydraulic compensation effect of Q, and the hydraulic characteristics, could to some extent explain that the whole-tree water use per unit leaf area of S. superba remained constant in the dry and wet seasons, and SWC had no significant effect on transpiration.

    参考文献
    [1] NI G Y, ZHAO P, ZHU L W, et al. Hydraulic responses of whole tree transpiration of Schima superba to soil moisture in dry and wet seasons [J]. Acta Ecol Sin, 2015, 35(3): 652-662. doi: 10.5846/stxb20130507 0962. 倪广艳, 赵平, 朱丽薇, 等. 荷木整树蒸腾对干湿季土壤水分的水力响应 [J]. 生态学报, 2015, 35(3): 652-662. doi: 10.5846/stxb2013 05070962.
    [2] Lu P, Biron P, BrÉda N, et al. Water relations of adult Norway spruce [Picea abies (L.) Karst] under soil drought in the Vosges Mountains: Water potential, stomatal conductance and transpiration [J]. Ann Sci For, 1995, 52(2): 117-129. doi: 10.1051/forest:19950203.
    [3] BRODRIBB T J, HOLBROOK N M. Water stress deforms tracheids peripheral to the leaf vein of a tropical conifer [J]. Plant Physiol, 2005, 137(3): 1139-1146. doi: 10.1104/pp.104.058156.
    [4] AUCLAIR A N D. Extreme climatic fluctuations as a cause of forest dieback in the Pacific rim [J]. Water Air Soil Poll, 1993, 66(3/4): 207-229. doi: 10.1007/BF00479846.
    [5] MANZONI S, VICO G, KATUL G, et al. Hydraulic limits on maximum plant transpiration and the emergence of the safety-efficiency trade-off [J]. New Phytol, 2013, 198(1): 169-178. doi: 10.1111/nph.12126.
    [6] ZHAO P. On the coordinated regulation of forest transpiration by hydraulic conductance and canopy stomatal conductance [J]. Acta Ecol Sin, 2011, 31(4): 1164-1173. 赵平. 整树水力导度协同冠层气孔导度调节森林蒸腾 [J]. 生态学报, 2011, 31(4): 1164-1173.
    [7] IRVINE J, PERKS M P, MAGNANI F, et al. The response of Pinus sylvestris to drought: Stomatal control of transpiration and hydraulic conductance [J]. Tree Physiol, 1998, 18(6): 393-402. doi: 10.1093/tree phys/18.6.393.
    [8] COCHARD H, BRÉDA N, GRANIER A. Whole tree hydraulic conductance and water loss regulation in Quercus during drought: Evidence for stomatal control of embolism? [J]. Ann Sci For, 1996, 53 (2/3): 197-206. doi: 10.1051/forest:19960203.
    [9] STOUT D L, SALA A. Xylem vulnerability to cavitation in Pseudo-tsuga menziesii and Pinus ponderosa from contrasting habitats [J]. Tree Physiol, 2003, 23(1): 43-50. doi: 10.1093/treephys/23.1.43.
    [10] LOUSTAU D, BERBIGIER P, ROUMAGNAC P, et al. Transpiration of a 64-year-old maritime pine stand in Portugal [J]. Oecologia, 1996, 107(1): 33-42. doi: 10.1007/BF00582232.
    [11] ZHAO P. Compensation of tree water storage for hydraulic limitation: Research progress [J]. Chin J Appl Ecol, 2010, 21(6): 1565-1572. 赵平. 树木储存水对水力限制的补偿研究进展 [J]. 应用生态学报, 2010, 21(6): 1565-1572.
    [12] HATTON T, REECE P, TAYLOR P, et al. Does leaf water efficiency vary among eucalypts in water-limited environments? [J]. Tree Physiol, 1998, 18(8-9): 529-536. doi: 10.1093/treephys/18.8-9.529.
    [13] ZHU L W, ZHAO P, WANG Q, et al. Stomatal and hydraulic conduc-tance and water use in a eucalypt plantation in Guangxi, southern China [J]. Agri For Meteorol, 2015, 202: 61-68. doi: 10.1016/j.agr formet.2014.12.003.
    [14] GRANIER A. Evaluation of transpiration in a douglas-fir stand by means of sap flow measurements [J]. Tree Physiol, 1987, 3(4): 309-320. doi: 10.1093/treephys/3.4.309.
    [15] CAMPBELL G S, NORMAN J M. An Introduction to Environmental Biophysics [M]. New York: Springer Science, Business Media, 2012: 40-42.
    [16] MEI T T, ZHAO P, WANG Q, et al. Effects of tree diameter at breast height and soil moisture on transpiration of Schima superba based on sap flow pattern and normalization [J]. Chin J Appl Ecol, 2010, 21(10): 2457-2464. 梅婷婷, 赵平, 王权, 等. 基于液流格型特征值和标准化方法分析胸径和土壤水分对荷木液流的影响 [J]. 应用生态学报, 2010, 21 (10): 2457-2464.
    [17] KÖSTNER B M M, SCHULZE E D, KELLIHER F M, et al. Trans-piration and canopy conductance in a pristine broad-leaved forest of Nothofagus: An analysis of xylem sap flow and eddy correlation mea-surements [J]. Oecologia, 1992, 91(3): 350-359. doi: 10.1007/BF00 317623.
    [18] OREN R, PHILLIPS N, EWERS B E, et al. Sap-flux-scaled transpiration responses to light, vapor pressure deficit, and leaf area reduction in a flooded Taxodium distichum forest [J]. Tree Physiol, 1999, 19(6): 337-347. doi: 10.1093/treephys/19.6.337.
    [19] MÄKELÄ A, VANNINEN P. Vertical structure of Scots pine crowns in different age and size classes [J]. Trees, 2001, 15(7): 385-392. doi: 10. 1007/s004680100118.
    [20] MACINNIS-NG C, MCCLENAHAN K, EAMUS D. Convergence in hydraulic architecture, water relations and primary productivity amongst habitats and across seasons in Sydney [J]. Funct Plant Biol, 2004, 31(5): 429-439. doi: 10.1071/FP03194.
    [21] ZHAO P, RAO X Q, MA L, et al. Sap flow-scaled stand transpiration and canopy stomatal conductance in an Acacia mangium forest [J]. J Plant Ecol, 2006, 30(4): 655-665. 赵平, 饶兴权, 马玲, 等. 基于树干液流测定值进行尺度扩展的马占相思林段蒸腾和冠层气孔导度 [J]. 植物生态学报, 2006, 30(4): 655-665.
    [22] ZEPPEL M, MACINNIS-NG C, PALMER A, et al. An analysis of the sensitivity of sap flux to soil and plant variables assessed for an Australian woodland using a soil-plant-atmosphere model [J]. Funct Plant Biol, 2008, 35(6): 509-520. doi: 10.1071/FP08114.
    [23] BLEBY T M, COLQUHOUN I J, ADAMS M A. Hydraulic traits and water use of Eucalyptus on restored versus natural sites in a seasonally dry forest in southwestern Australia [J]. For Ecol Manag, 2012, 274: 58-66. doi: 10.1016/j.foreco.2012.02.029.
    [24] EWER B E, MACKAY D S, GOWER S T, et al. Tree species effects on stand transpiration in northern Wisconsin [J]. Water Resour Res, 2002, 38(7): 8-1-8-11. doi: 10.1029/2001WR000830.
    [25] PATAKI D E, OREN R, SMITH W K. Sap flux of co-occurring species in a western subalpine forest during seasonal soil drought [J]. Ecology, 2000, 81(9): 2557-2566. doi: 10.1890/0012-9658(2000)081[2557: SF OCOS]2.0.CO;2.
    [26] WANG H Z, HAN L, ZHOU L Z, et al. Dynamical responses of Populus euphraticu and Populus pruinosa water potential to different depths of groundwater level [J]. Agri Res Arid Areas, 2007, 25(5): 125-129. 王海珍, 韩路, 周正立, 等. 胡杨、灰叶胡杨水势对不同地下水位的动态响应 [J]. 干旱地区农业研究, 2007, 25(5): 125-129.
    [27] BALDOCCHI D D, XU L K. What limits evaporation from Medi-terranean oak woodlands: The supply of moisture in the soil, physio-logical control by plants or the demand by the atmosphere? [J]. Adv Water Resour, 2007, 30(10): 2113-2122. doi: 10.1016/j.advwatres. 2006.06.013.
    [28] SOBRADO M A, TURNER N C. A comparison of the water relations characteristics of Helianthus annuus and Helianthus petiolaris when subjected to water deficits [J]. Oecologia, 1983, 58(3): 309-313. doi: 10.1007/BF00385228.
    [29] ZHU L W, ZHAO P, CAI X A, et al. Characteristics of transpiration and canopy stomatal conductance of Schima superba plantation and their responses to environmental factors [J]. J Trop Subtrop Bot, 2010, 18(6): 599-606. doi: 10.3969/j.issn.1005-3395.2010.06.002. 朱丽薇, 赵平, 蔡锡安, 等. 荷木人工林蒸腾与冠层气孔导度特征及对环境因子的响应 [J]. 热带亚热带植物学报, 2010, 18(6): 599-606. doi: 10.3969/j.issn.1005-3395.2010.06.002.
    [30] WHITE D A, TURNER N C, GALBRAITH J H. Leaf water relations and stomatal behavior of four allopatric Eucalyptus species planted in Mediterranean southwestern Australia [J]. Tree Physiol, 2000, 20(17): 1157-1165. doi: 10.1093/treephys/20.17.1157.
    [31] REICH P B, HINCKLEY T M. Influence of pre-dawn water potential and soil-to-leaf hydraulic conductance on maximum daily leaf diffusive conductance in two oak species [J]. Funct Ecol, 1989, 3(6): 719-726.
    [32] SUN G C, ZHAO P, ZENG X P, et al. Hydraulic responses of stomatal conductance in leaves of successional tree species in subtropical forest to environmental moisture [J]. Acta Ecol Sin, 2009, 29(2): 698-705. doi: 10.3321/j.issn:1000-0933.2009.02.018. 孙谷畴, 赵平, 曾小平, 等. 亚热带森林演替树种叶片气孔导度对环境水分的水力响应 [J]. 生态学报, 2009, 29(2): 698-705. doi: 10. 3321/j.issn:1000-0933.2009.02.018.
    [33] OREN R, SPERRY J S, KATUL G G, et al. Survey and synthesis of intra-and interspecific variation in stomatal sensitivity to vapour pressure deficit [J]. Plant Cell Environ, 1999, 22(12): 1515-1526. doi: 10.1046/j.1365-3040.1999.00513.x.
    [34] HU Y T, ZHAO P, NIU J F, et al. Characteristics of canopy stomatal conductance in plantations of three re-vegetation tree species and its sensitivity to environmental factors [J]. Chin J Appl Ecol, 2015, 26(9): 2623-2631. 胡彦婷, 赵平, 牛俊峰, 等. 三种植被恢复树种的冠层气孔导度特征及其对环境因子的敏感性 [J]. 应用生态学报, 2015, 26(9): 2623-2631.
    [35] TURNER N C, SCHULZE E D, GOLLAN T. The responses of stomata and leaf gas exchange to vapour pressure deficits and soil water content: I. Species comparisons at high soil water contents [J]. Oecologia, 1984, 63(3): 338-342. doi: 10.1007/BF00390662.
    [36] BUCCI S J, SCHOLZ F G, GOLDSTEIN G, et al. Soil water avai-lability and rooting depth as determinants of hydraulic architecture of Patagonian woody species [J]. Oecologia, 2009, 160(4): 631-641. doi: 10.1007/s00442-009-1331-z.
    [37] ADDINGTON R N, MITCHELL R J, OREN R, et al. Stomatal sensi-tivity to vapor pressure deficit and its relationship to hydraulic conduc-tance in Pinus palustris [J]. Tree Physiol, 2004, 24(5): 561-569. doi: 10.1093/treephys/24.5.561.
    [38] ZHOU C M, ZHAO P, NI G Y, et al. Water recharge through nighttime stem sap flow of Schima superba in Guangzhou region of Guangdong Province, south China: Affecting factors and contribution to trans-piration [J]. Chin J Appl Ecol, 2012, 23(7): 1751-1757. 周翠鸣, 赵平, 倪广艳, 等. 广州地区荷木夜间树干液流补水的影响因子及其对蒸腾的贡献 [J]. 应用生态学报, 2012, 23(7): 1751-1757.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

曾小敏,赵平,欧阳磊,朱丽薇,倪广艳,赵秀华.荷木对干湿季土壤水分的利用和适应性调节[J].热带亚热带植物学报,2017,25(2):105~114

复制
分享
文章指标
  • 点击次数:1400
  • 下载次数: 1000
  • HTML阅读次数: 312
  • 引用次数: 0
历史
  • 收稿日期:2016-09-06
  • 最后修改日期:2016-11-11
  • 录用日期:2016-12-29
  • 在线发布日期: 2017-03-16
文章二维码