蔗糖转化酶在高等植物生长发育及胁迫响应中的功能研究进展
作者:
作者单位:

华南农业大学

基金项目:

国家自然科学基金项目(31501734);教育部第48批留学回国人员科研启动基金项目资助


Advances in Research on Invertase in Plant Development and Response to Abiotic and Biotic Stresses
Author:
Affiliation:

South China Agricultural University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [41]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    随着分子生物学和测序技术的发展,植物蔗糖转化酶基因的克隆、表达调控及其功能方面的研究取得了长足的进展。综述了近年来蔗糖转化酶在植物生长发育、以及转化酶介导的植物对生物与非生物胁迫等过程中的重要作用,并对该领域今后的研究前景进行了展望。

    Abstract:

    In recent years, some exciting advances on invertase in plant have been made with the development of molecular biology and sequencing technology. Here, the recent progress on the roles of INV in plant development and INV-mediated responses to abiotic and biotic stresses was reviewed. Finally, the future directions for unraveling the mechanisms underlying INV-mediated signal transduction were proposed.

    参考文献
    [1] Zhang Y, Zhang D B, Liu M. The molecular mechanism of long-distance sugar transport in plants [J]. Chin Bull Bot, 2015, 50(1): 107-121. doi:10.3724/SP.J.1259.2015.00107. 张懿, 张大兵, 刘曼. 植物体内糖分子的长距离运输及其分子机制 [J]. 植物学报, 2015, 50(1): 107-121. doi:10.3724/SP.J.1259.2015. 00107.
    [2] Pan Q H, Zhang D P. Isoforms, characteristics and roles of plant invertases [J]. Plant Physiol Commun, 2004, 40(3): 275-280. 潘秋红, 张大鹏. 植物转化酶的种类、特性与功能 [J]. 植物生理学通讯, 2004, 40(3): 275-280.
    [3] LIU H Y, ZHU Z J. Advances on the studies of invertase on sucrose metabolism in higher plant [J]. Chin Bull Bot, 2002, 19(6): 666-674. doi:10.3969/j.issn.1674-3466.2002.06.004. 刘慧英, 朱祝军. 转化酶在高等植物蔗糖代谢中的作用研究进展 [J]. 植物学通报, 2002, 19(6): 666-674. doi:10.3969/j.issn.1674-3466. 2002.06.004.
    [4] LAN J X, TANG C R. Advances on the studies of physiological and biochemical characteristics of invertase in higher plants [J]. Chin J Trop Crops, 2012, 33(9): 1702-1707. doi:10.3969/j.issn.1000-2561. 2012.09.033. 蓝基贤, 唐朝荣. 高等植物中转化酶生理生化特性的研究进展 [J]. 热带作物学报, 2012, 33(9): 1702-1707. doi:10.3969/j.issn.1000- 2561.2012.09.033.
    [5] Ruan Y L, Jin Y, Yang Y J, et al. Sugar input, metabolism, and signaling mediated by invertase: Roles in development, yield potential, and response to drought and heat [J]. Mol Plant, 2010, 3(6): 942-955. doi:10.1093/mp/ssq044.
    [6] Tauzin A S, Giardina T. Sucrose and invertases, a part of the plant defense response to the biotic stresses [J]. Front Plant Sci, 2014, 5(5): 2-93. doi:10.3389/fpls.2014.00293.
    [7] Ruan Y L. Sucrose metabolism: Gateway to diverse carbon use and sugar signaling [J]. Annu Rev Plant Biol, 2014, 65(1): 33-67. doi:10.1146/annurev-arplant-050213-040251.
    [8] STURM A. Invertases: Primary structures, functions, and roles in plant development and sucrose partitioning [J]. Plant Physiol, 1999, 121(1): 1-8. doi:10.1104/pp.121.1.1.
    [9] Pan Q H, Zhang D P. Plant acid invertase gene and regulation of its expression [J]. Chin Bull Bot, 2005, 22(2): 129-137. doi:10.3969/j. issn.1674-3466.2005.02.001. 潘秋红, 张大鹏. 植物酸性转化酶基因及其表达调控 [J]. 植物学通报, 2005, 22(2): 129-137. doi:10.3969/j.issn.1674-3466.2005.02. 001.
    [10] LI X Q, WANG J S, ZHANG G F. Advanced in plant invertase and regulation of gene expression [J]. Acta Hort Sin, 2008, 35(9): 13-84 1392. doi:10.3321/j.issn:0513-353X.2008.09.022. 李肖蕖, 王建设, 张根发. 植物蔗糖转化酶及其基因表达调控研究进展 [J]. 园艺学报, 2008, 35(9): 1384-1392. doi:10.3321/j.issn:0513-353X.2008.09.022.
    [11] Hothorn M, Wolf S, Aloy P, et al. Structural insights into the target specificity of plant invertase and pectin methylesterase inhibitory proteins [J]. Plant Cell, 2004, 16(12): 3437-3447. doi:10.1105/tpc.104. 025684.
    [12] Cheng W H, Tallercio E W, Chourey P S. The Miniature1 seed locus of maize encodes a cell wall invertase required for normal development of endosperm and maternal cells in the pedicel [J]. Plant Cell, 1996, 8(6): 971-983. doi:10.1105/tpc.8.6.971.
    [13] Weber H, Borisjuk L, Wobus U. Controlling seed development and seed size in Vicia faba: A role for seed coat-associated invertases and carbohydrate state [J]. Plant J, 1996, 10(5): 823-834. doi:10.1046/j.1365-313X.1996.10050823.x.
    [14] Yang Z Y, Wang T D, Wang H C, et al. Patterns of enzyme activities and gene expressions in sucrose metabolism in relation to sugar accumulation and composition in the aril of Lichi chinensis Sonn. [J]. J Plant Physiol, 2013, 170(8): 731-740. doi:10.1016/j.jplph.2012. 12.021.
    [15] Wang E T, Wang J J, Zhu X D, et al. Control of rice grain-filling and yield by a gene with a potential signature of domestication [J]. Nat Genet, 2008, 40(11): 1370-1374. doi:10.1038/ng.220.
    [16] Jin Y, Ni D A, Ruan Y L. Posttranslational elevation of cell wall invertase activity by silencing its inhibitor in tomato delays leaf senescence and increases seed weight and fruit hexose level [J]. Plant Cell, 2009, 21(7): 2072-2089. doi:10.1105/tpc.108.063719.
    [17] Wang L, Ruan Y L. New insights into roles of cell wall invertase in early seed development revealed by comprehensive spatial and temporal expression patterns of GhCWIN1 in cotton [J]. Plant Physiol, 2012, 160(2): 777-787. doi:10.1104/pp.112.203893.
    [18] Tang G Q, Lüscher M, Sturm A. Antisense repression of vacuolar and cell wall invertase in transgenic carrot alters early plant development and sucrose partitioning [J]. Plant Cell, 1999, 11(2): 177-189. doi:10.1105/tpc.11.2.177.
    [19] Zanor M I, Osorio S, Nunes-Nesi A, et al. RNA interference of LIN5 in tomato confirms its role in controlling Brix content, uncovers the influence of sugars on the levels of fruit hormones and demonstrates the importance of sucrose cleavage for normal fruit development and fertility [J]. Plant Physiol, 2009, 150(3): 1204-1218. doi:10.1104/pp.109.136598.
    [20] Hayes M A, Feechan A, Dry I B. Involvement of abscisic acid in the coordinated regulation of a stress-inducible hexose transporter (VvHT5) and a cell wall invertase in grapevine in response to biotrophic fungal infection [J]. Plant Physiol, 2010, 153(1): 211-221. doi:10.1104/pp.110.154765.
    [21] Wang L, Li X R, Lian H, et al. Evidence that high activity of vacuolar invertase is required for cotton fiber and Arabidopsis root elongation through osmotic dependent and independent pathways, respectively [J]. Plant Physiol, 2010, 154(2): 744-756. doi:10.1104/pp.110.162487.
    [22] Klann E M, Hall B, Bennett A B. Antisense acid invertase (TIV1) gene alters soluble sugar composition and size in transgenic tomato fruit [J]. Plant Physiol, 1996, 112(3): 1321-1330. doi:10.1104/pp.112.3.1321.
    [23] ZHANG H L, LIU J, HOU J, et al. The potato amylase inhibitor gene SbAI regulates cold-induced sweetening in potato tubers by modulating amylase activity [J]. Plant Biotechn J, 2014, 12(7): 984-993. doi:10. 1111/pbi.12221.
    [24] Barratt D H P, Derbyshire P, Findlay K, et al. Normal growth of Arabidopsis requires cytosolic invertase but not sucrose synthase [J]. Proc Natl Acad Sci USA, 2009, 106(31): 13124-13129. doi:10.1073/pnas.0900689106.
    [25] Jia L Q, Zhang B T, Mao C Z, et al. OsCYT-INV1 for alkaline/neutral invertase is involved in root cell development and reproduce- tivity in rice (Oryza sativa L.) [J]. Planta, 2008, 228(1): 51-59. doi:10.1007/s00425-008-0718-0.
    [26] Welham T, Pike J, Horst I, et al. A cytosolic invertase is required for normal growth and cell development in the model legume, Lotus japonicas [J]. J Exp Bot, 2009, 60(12): 3353-3365. doi:10.1093/jxb/erp169.
    [27] Zinselmeier C, Jeong B R, Boyer J S. Starch and the control of kernel number in maize at low water potentials [J]. Plant Physiol, 1999, 121(1): 25-36. doi:10.1104/pp.121.1.25.
    [28] MCLAUGHLIN J E, BOYER J S. Sugar-responsive gene expression, invertase activity, and senescence in aborting maize ovaries at low water potentials [J]. Ann Bot, 2004, 94(5): 675-689. doi:10.1093/aob/mch193.
    [29] Pressman E, Harel D, Zamski E, et al. The effect of high temperatures on the expression and activity of sucrose-cleaving enzymes during tomato (Lycopersicon esculentum) anther development [J]. J Hort Sci Biotechn, 2006, 81(3): 341-348.
    [30] Frank G, Pressman E, Ophir R, et al. Transcriptional profiling of maturing tomato (Solanum lycopersicum L.) microspores reveals the involvement of heat shock proteins, ROS scavengers, hormones, and sugars in the heat stress response [J]. J Exp Bot, 2009, 60(13): 3891-3908. doi:10.1093/jxb/erp234.
    [31] Cheikh N, Jones R J. Heat stress effects on sink activity of developing maize kernels grown in vitro [J]. Physiol Plant, 2006, 95(1): 59-66. doi:10.1111/j.1399-3054.1995.tb00808.x.
    [32] Muller B, Pantin F, Génard M, et al. Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs [J]. J Exp Bot, 2011, 62(6): 1715-1729. doi:10.1093/jxb/erq438.
    [33] Chen L Q, Qu X Q, Hou B H, et al. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport [J]. Science, 2012, 335(6065): 207-211. doi:10.1126/science.1213351.
    [34] Chu Z H, Yuan M, Yao J L, et al. Promoter mutations of an essential gene for pollen development result in disease resistance in rice [J]. Genes Dev, 2006, 20(10): 1250-1255. doi:10.1101/gad.1416306.
    [35] Herbers K, Meuwly P, Frommer W B, et al. Systemic acquired resistance mediated by the ectopic expression of invertase: Possible hexose sensing in the secretory pathway [J]. Plant Cell, 1996, 8(5): 793-803. doi:10.1105/tpc.8.5.793.
    [36] Sun L, Yang D L, Kong Y, et al. Sugar homeostasis mediated by cell wall invertase GRAIN INCOMPLETE FILLING 1 (GIF1) plays a role in pre-existing and induced defence in rice [J]. Mol Plant Pathol, 2014, 15(2): 161-173. doi:10.1111/mpp.12078.
    [37] Essmann J, Schmitz-Thom I, SchÖn H, et al. RNA interference-mediated repression of cell wall invertase impairs defense in source leaves of tobacco [J]. Plant Physiol, 2008, 147(3): 1288-1299. doi:10.1104/pp.108.121418.
    [38] Fotopoulos V, Gilbert M J, Pittman J K, et al. The monosaccharide transporter gene, AtSTP4, and the cell-wall invertase, Atβfruct1, are induced in Arabidopsis during infection with the fungal biotroph Erysiphe cichoracearum [J]. Plant Physiol, 2003, 132(2): 821-829. doi:10.1104/pp.103.021428.
    [39] Heyer A G, Raap M, Schroeer B, et al. Cell wall invertase expression at the apical meristem alters floral, architectural, and reproductive traits in Arabidopsis thaliana [J]. Plant J, 2004, 39(2): 161-169. doi:10.1111/j.1365-313X.2004.02124.x.
    [40] Wächter R, Langhans M, Aloni R, et al. Vascularization, high-volume solution flow, and localized roles for enzymes of sucrose metabolism during tumorigenesis by Agrobacterium tumefaciens [J]. Plant Physiol, 2003, 133(3): 1024-1037. doi:10.1104/pp.103.028142.
    [41] Hyun T K, Eom S H, Rim Y, et al. Alteration of the expression and activation of tomato invertases during Botrytiscinerea infection [J]. Plant Omics, 2011, 4(7): 413-417.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

赵杰堂.蔗糖转化酶在高等植物生长发育及胁迫响应中的功能研究进展[J].热带亚热带植物学报,2016,24(3):352~358

复制
分享
文章指标
  • 点击次数:1816
  • 下载次数: 2965
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2015-12-15
  • 最后修改日期:2016-01-09
  • 录用日期:2016-03-01
  • 在线发布日期: 2016-05-19
文章二维码