基于Farquhar改进模型的北亚热带森林常见树种光合限速因子研究
作者:
作者单位:

中国林业科学研究院亚热带林业研究所,中国林业科学研究院亚热带林业研究所

基金项目:

国家林业局948项目(2014-4-57);中央级公益性科研院所基本科研业务费专项资金(RISF2013002)资助


Limiting States of Photosynthesis of Common Tree Species in the North-subtropical Forest Based on Improved Farquhar Model
Author:
Affiliation:

Research Institute of Subtropical Forestry, Chinese Academy of Forestry,Research Institute of Subtropical Forestry, Chinese Academy of Forestry

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [34]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为探讨北亚热带地区植物的光合限速因子,利用改进的Farquhar模型研究了9种常见树种的光合特性。结果表明,与常绿树种相比,落叶树种枫香(Liquidambar formosana)和乌桕(Sapium sebiferum)的最大净光合速率(Pmax)和表观羧化速率(CE)较大;核酮糖-1,5-二磷酸羧化酶/加氧酶(Rubisco)活性是他们的光合限速因子。地带性树种青冈栎(Cyclobalanopsis glauca)的Pmax和CE在常绿木本植物中最大,青冈较强的光合能力可能是来源于Vcmax和TPU。耐阴灌木八角金盘(Fatsia japonica)和美人茶(Camellia uraku)的Pmax较小,其光合限速因子是叶肉细胞导度和呼吸速率。低光照下植物较低的光合能力是由于较小的叶肉导度(gm)和TPU导致的;有效光合辐射短时间的降低使得物种的gm平均减少了60.14%。因此,不同树种在不同环境条件下的光合限速因子不尽相同,应根据树种不同的光合生理特性来合理布局,科学育林。

    Abstract:

    In order to understand the limiting factors of photosynthesis of tree species in north-subtropical forest, China, the photosynthesis characteristics of nine common tree species was studied by using improved Farquhar model. The results showed that the maximum photosynthesis rate (Pmax) and carboxylation efficiency (CE) of deciduous Liquidambar formosana and Sapium sebiferum were higher than those of other evergreen species; the activity of ribulose bisphosphate carboxylase oxygenase (Rubisco) was limiting factor of photosynthesis rate in two species. The CE and Pmax of Cyclobalanopsis glauca were the highest among seven evergreen species, and its strong photosynthesis capacity might derive from high maximum carboxylation rate (Vcmax) and triose phosphate utilization rate (TPU). The Pmax of shade-tolerant shrub Fatsia japonica and Camellia uraku was low because of low gm and high dark respiration rate (Rd). The low photosynthesis capacity under low light intensity (200 μmol m-2s-1) was due to low gm and TPU. The reduction of effective photosynthetic radiation in short term caused gm decrease by 60.14%. Therefore, the photosynthetic limiting factors of different tree species were different under different environment conditions. It was necessary for reasonable arrangement of tree species and scientific afforestation according to its photosynthetic characteristics.

    参考文献
    [1] CHANG J, GE Y, CHEN Z H, et al. Characteristics of the leaf net photosynthesis of the evergreen broad-leaved forest dominated by Quercus glauca and their significance in coenology[J]. Acta Phytoecol Sin, 1999, 23(5):393-400. 常杰, 葛滢, 陈增鸿, 等. 青冈常绿阔叶林主要植物种叶片的光合特性及其群落学意义[J]. 植物生态学报, 1999, 23(5):393-400.
    [2] FARQUHAR G D, von CAEMMERER S, BERRY J A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species[J]. Planta, 1980, 149(1):78-90. doi:10.1007/BF00386231.
    [3] SAGE R F. A model describing the regulation of ribulose-1,5-bisphosphate carboxylase, electron transport, and triose phosphate use in response to light intensity and CO2 in C3 plants[J]. Plant Physiol, 1990, 94(4):1728-1734. doi:10.1104/pp.94.4.1728.
    [4] MANTER D K, KERRIGAN J. A/Ci curve analysis across a range of woody plant species:Influence of regression analysis parameters and mesophyll conductance[J]. J Exp Bot, 2004, 55(408):2581-2588. doi:10.1093/jxb/erh260.
    [5] SAGO R F. Acclimation of photosynthesis to increasing atmospheric CO2:The gas exchange perspective[J]. Photosynth Res, 1994, 39(3):351-368. doi:10.1007/BF00014591.
    [6] EVANS J R, LORETO F. Acquisition and diffusion of CO2 in higher plant leaves[M]//LEEGOOD R C, SHARKEY T D, von CAEMME-RER S. Photosynthesis:Physiology and Metabolism. Amsterdam:Academic Publishers, 2000:321-351. doi:10.1007/0-306-48137-5_14.
    [7] LAUER M J, BOYER J S. Internal CO2 measured directly in leaves:Abscisic acid and low leaf water potential cause opposing effects[J]. Plant Physiol, 1992, 98(4):1310-1316. doi:10.1104/pp.98.4.1310.
    [8] SUN Y, GU L H, DICKINSON R E, et al. Asymmetrical effects of mesophyll conductance on fundamental photosynthetic parameters and their relationships estimated from leaf gas exchange measurements[J]. Plant Cell Environ, 2013, 37(4):978-994. doi:10.1111/pce.12213.
    [9] FLEXAS J, RIBAS-CARBÓ M, BOTA J, et al. Decreased rubisco activity during water stress is not induced by decreased relative water content but related to conditions of low stomatal conductance and chloroplast CO2 concentration[J]. New Phytol, 2006, 172(1):73-82. doi:10.1111/j.1469-8137.2006.01794.x.
    [10] MONTI A, BRUGNOLI E, SCARTAZZA A, et al. The effect of transient and continuous drought on yield, photosynthesis and carbon isotope discrimination in sugar beet (Beta vulgaris L.)[J]. J Exp Bot, 2006, 57(6):1253-1262. doi:10.1093/jxb/erj091.
    [11] BERNACCHI C J, MORGAN P B, ORT D R, et al. The growth of soybean under free air[CO2] enrichment (FACE) stimulates photo-synthesis while decreasing in vivo rubisco capacity[J]. Planta, 2005, 220(3):434-446. doi:10.1007/s00425-004-1320-8.
    [12] FLOWERS M D, FISCUS E L, BURKEY K O, et al. Photosynthesis, chlorophyll fluorescence, and yield of snap bean (Phaseolus vulgaris L.) genotypes differing in sensitivity to ozone[J]. Environ Exp Bot, 2007, 61(2):190-198. doi:10.1016/j.envexpbot.2007.05.009.
    [13] LORETO F, CENTRITTO M, CHARTZOULAKIS K. Photosynthetic limitations in olive cultivars with different sensitivity to salt stress[J]. Plant Cell Environ, 2003, 26(4):595-601. doi:10.1046/j.1365-3040. 2003.00994.x.
    [14] DOUTHE C, DREYER E, BRENDEL O, et al. Is mesophyll conductance to CO2 in leaves of three Eucalyptus species sensitive to short-term changes of irradiance under ambient as well as low O2?[J]. Funct Plant Biol, 2012, 39(5):435-448. doi:10.1071/FP11190.
    [15] DOUTHE C, DREYER E, EPRON D, et al. Mesophyll conductance to CO2, assessed from online TDL-AS records of 13CO2 discrimination, displays small but significant short-term responses to CO2 and irradiance in Eucalyptus seedlings[J]. J Exp Bot, 2011, 62(15):5335-5346. doi:10.1093/jxb/err141.
    [16] LORETO F, TSONEV T, CENTRITTO M. The impact of blue light on leaf mesophyll conductance[J]. J Exp Bot, 2009, 60(8):2283-2290. doi:10.1093/jxb/erp112.
    [17] XIONG D L, LIU X, LIU L M, et al. Rapid responses of mesophyll conductance to changes of CO2 concentration, temperature and irra-diance are affected by N supplements in rice[J]. Plant Cell Environ, 2015, 38(12):2541-2550. doi:10.1111/pce.12558.
    [18] FINI A, LORETO F, TATTINI M, et al. Mesophyll conductance plays a central role in leaf functioning of Oleaceae species exposed to con-trasting sunlight irradiance[J/OL]. Physiol Plant, 2016. doi:10. 1111/ppl.12401
    [19] YOU M G, GAI J Y, MA Y H, et al. Relationship of leaf photosynthetic rate with stomatal and mesophyll conductance in soybeans[J]. Acta Agron Sin, 1995, 21(2):145-149. 游明安, 盖钧镒, 马育华, 等. 大豆叶片光合速率与气孔导度、叶肉导度的关系[J]. 作物学报, 1995, 21(2):145-149.
    [20] XIAO K, GU J T, ZOU D H, et al. Studies on CO2 conductance during flag leaf aging of hybrid wheat and their parents[J]. Acta Agron Sin, 1998, 24(7):503-508. 肖凯, 谷俊涛, 邹定辉, 等. 杂种小麦及亲本旗叶老化过程中CO2导度的研究[J]. 作物学报, 1998, 24(7):503-508.
    [21] ZHANG Y L, XIAO K, LI Y M. Effect of irrigation times on the photosynthetic characteristic of flag leaf and grain yield in wheat hybrid Ji'ai 1/C6-38[J]. Acta Agron Sin, 2006, 32(3):410-414. doi:10.3321/j.issn:0496-3490.2006.03.016. 张永丽, 肖凯, 李雁鸣. 灌水次数对杂种小麦冀矮1/C6-38旗叶光合特性和产量的影响[J]. 作物学报, 2006, 32(3):410-414. doi:10. 3321/j.issn:0496-3490.2006.03.016.
    [22] SUN G C, ZHAO P. Responses of mesophyllic conductance in leaves of 4 dominant subtropical forest tree species to moderate high temperature[J]. Chin J Appl Ecol, 2007, 18(6):1187-1193. 孙谷畴, 赵平. 亚热带森林四种建群树种叶片叶肉导度对适度高温的响应[J]. 应用生态学报, 2007, 18(6):1187-1193.
    [23] GU L H, PALLARDY S G, TU K, et al. Reliable estimation of bio-chemical parameters from C3 leaf photosynthesis-intercellular carbon dioxide response curves[J]. Plant Cell Environ, 2010, 33(11):1852-1874. doi:10.1111/j.1365-3040.2010.02192.x.
    [24] GU L H, SUN Y. Artefactual responses of mesophyll conductance to CO2 and irradiance estimated with the variable J and online isotope discrimination methods[J]. Plant Cell Environ, 2014, 37(5):1231-1249. doi:10.1111/pce.12232.
    [25] GUAN M, JIN Z X, WANG Q, et al. Response of photosynthesis traits of dominant plant species to different light regimes in the secondary forest in the area of Qiandao Lake, Zhejiang, China[J]. Chin J Appl Ecol, 2014, 25(6):1615-1622. 管铭, 金则新, 王强, 等. 千岛湖次生林优势种植物光合特性对不同光环境的响应[J]. 应用生态学报, 2014, 25(6):1615-1622.
    [26] ZHOU B Z, FU M Y. Fine root production and turnover of Phyllostachys pubescens stands in Miaoshanwu Nature Reserve[J]. Acta Agri Univ Jiangxi, 2008, 30(2):239-245. doi:10.3969/j.issn. 1000-2286.2008.02.012. 周本智, 傅懋毅. 庙山坞自然保护区毛竹林细根生产和周转研究[J]. 江西农业大学学报, 2008, 30(2):239-245. doi:10.3969/j.issn. 1000-2286.2008.02.012.
    [27] LUO F Y, CHEN W Y, CHEN Z Y. Applicability of modified exponential model in photosynthetic-CO2 response curve of barley[J]. Chin J Plant Ecol, 2013, 37(7):650-655. doi:10.3724/SP.J.1258.2013. 00067. 罗辅燕, 陈卫英, 陈真勇. 指数改进模型在大麦光合-CO2响应曲线中的适用性[J]. 植物生态学报, 2013, 37(7):650-655. doi:10.3724/SP.J.1258.2013.00067.
    [28] DONG Z X, HAN Q F, JIA Z K, et al. Photosynthesis rate in response to light intensity and CO2 concentration in different alfalfa varieties[J]. Acta Ecol Sin, 2007, 27(6):2272-2278. doi:10.3321/j.issn:1000-0933. 2007.06.016. 董志新, 韩清芳, 贾志宽, 等. 不同苜蓿(Medicago sativa L.)品种光合速率对光和CO2浓度的响应特征[J]. 生态学报, 2007, 27(6):2272-2278. doi:10.3321/j.issn:1000-0933.2007.06.016.
    [29] LI Y, PENG S B, HUANG J L, et al. Components and magnitude of mesophyll conductance and its responses to environmental variations[J]. Plant Physiol J, 2013, 49(11):1143-1154. 李勇, 彭少兵, 黄见良, 等. 叶肉导度的组成、大小及其对环境因素的响应[J]. 植物生理学报, 2013, 49(11):1143-1154.
    [30] BAZZAZ F A. The physiological ecology of plant succession[J]. Annu Rev Ecol Syst, 1979, 10(976):351-371.
    [31] HASSIOTOU F, LUDWIG M, RENTON M, et al. Influence of leaf dry mass per area, CO2, and irradiance on mesophyll conductance in sclerophylls[J]. J Exp Bot, 2009, 60(8):2303-2314. doi:10.1093/jxb/erp021.
    [32] THOLEN D, BOOM C, NOGUCHI K, et al. The chloroplast avoidance response decreases internal conductance to CO2 diffusion in Arabidopsis thaliana leaves[J]. Plant Cell Environ, 2008, 31(11):1688-1700. doi:10.1111/j.1365-3040.2008.01875.x.
    [33] THOLEN D, ETHIER G, GENTY B, et al. Variable mesophyll conductance revisited:Theoretical background and experimental implications[J]. Plant Cell Environ, 2012, 35(12):2087-2103. doi:10.1111/j.1365-3040.2012.02538.x.
    [34] THOLEN D, ZHU X G. The mechanistic basis of internal conductance:A theoretical analysis of mesophyll cell photosynthesis and CO2 diffusion[J]. Plant Physiol, 2011, 156(1):90-105. doi:10.1104/pp. 111.172346.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

孟金柳,周本智,曹永慧,羊鲁军.基于Farquhar改进模型的北亚热带森林常见树种光合限速因子研究[J].热带亚热带植物学报,2016,24(4):359~366

复制
分享
文章指标
  • 点击次数:1719
  • 下载次数: 2418
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2015-10-10
  • 最后修改日期:2016-01-19
  • 录用日期:2016-04-26
  • 在线发布日期: 2016-07-15
文章二维码