热消散法(TDP)在5种竹子蒸腾耗水测定中的适用性评价
作者:
作者单位:

中国科学院华南植物园,中国科学院华南植物园,中国科学院华南植物园,中国科学院华南植物园,中国科学院华南植物园

基金项目:

国家自然科学(31170673,41030638,41275169)、广东省自然科学(S2012020010933)


Applicability evaluation of TDP method in the aspect of transpiration of 5 bamboo species
Author:
Affiliation:

South China Botanical Garden, Chinese Academy of Sciences,South China Botanical Garden, Chinese Academy of Sciences,South China Botanical Garden, Chinese Academy of Sciences,South China Botanical Garden, Chinese Academy of Sciences,South China Botanical Garden, Chinese Academy of Sciences

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [34]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    利用室内离体竹段注水变压法结合野外整株容器称重法对Granier公式进行验证和系数校正。并观察了5种竹子(毛竹Phyllostachys edulis、粉单竹Bambusa chungii、青皮竹Bambusa textilis、茶秆竹Arundinaria amabilis、龙头竹Bambusa vulgaris)茎秆维管束结构。结果发现:茎秆维管束分布不均,维管束发育程度从竹壁外向内逐渐成熟,输水能力也逐渐增强。室内实验中液流密度(Fd)和液流指数(K)值呈幂函数关系,相关系数R2>0.83,说明热消散探针方法能较好地反应竹类的液流密度。用整株容器称重法对推导出的液流公式校正后得到适于5种竹子的液流密度公式。校正后液流密度公式与原始Granier公式各系数均不同,其中a值更是超出原始公式几倍多。公式校正前后计算的日蒸腾量差异显著,尤其是在一天中液流高峰时段(午间)差距最大。结论表明只要对热消散探针方法准确验证、对Granier原始公式系数给以校正,那么TDP技术是估计竹类植物水分利用的一种适宜方法。

    Abstract:

    This study was undertaken to establish an optimal and reasonable design for TDP method to be used in bamboo water use owning to the special structure of bamboo species. By using the method of combining water-injection induced hydraulic pressure and sap flow changing device together with whole-plant container weighing in verifying the Granier empirical formula and calibrating the coefficient. In addition, we observed structure of vascular bundle in 5 bamboo species (Phyllostachys edulis、Bambusa chungii、Bambusa textilis、Arundinaria amabilis、Bambusa vulgaris). Vascular bundles were randomly scatted across the culms in uneven. Development degree of vascular bundles was different which vascular bundles close to the inside of clum were better than outside. Vascular bundles close to the inside of culm had better transporting water capability than outside. In the cut bamboo experiments, we found that Fd and K followed a power function and all the R2>0.83. This suggested TDP method was an applicable technique for assessing sap flow density in bamboo species. Furthermore, whole-plant container weighing method corrected the equation coefficients and gained the new sap flow formula for every bamboo kind. The new sap flow formula was different from the Grnaier empirical formula which a was several times more than original a. The daily transpiration calculated by new equation and Granier empirical formula had a significant difference, especially during the peak hours (at noon) of sap flow in one day . Our study concluded that as long as the TDP method is carefully verificated and Granier empirical formula is corrected, then TDP method is an applicable technique for assessing water use in bamboo species.

    参考文献
    [1] Hammett A L, Youngs R L, Sun X F, et al. Non-wood fibre as an alternative to wood fibre in China's pulp and paper industry [J]. Holzforschung, 2001, 55(2): 219-224.
    [2] Lessard G, Chouinard A. Bamboo research in Asia [C]//Proceedings of A Workshop Held in Singarpore, 28-30 May, 1980. Kerala, India: Kerala Forest Research Institute; Ottawa, Canada: International Development Research Centre, 1980: 235-241.
    [3] Zhou B Z, Fu M Y, Xie J Z, et al. Ecological functions of bamboo forest: Research and application [J]. J For Res, 2005, 16(2): 143-147.
    [4] Granier A. Evaluation of transpiration in a douglas-fir stand by means of sap flow measurements [J]. Tree Physiol, 1987, 3(4): 309-320.
    [5] Lu P, Urban L, Zhao P. Granier's Thermal Dissipation Probe (TDP) method for measuring sap flow in tree: Theory and practice [J]. Acta Bot Sin, 2004, 46(6): 631-646. 陆平, Urbab L, 赵平. 应用Granier热消散探针(TDP)法测定 树木的木质部液流: 理论与实践 [J]. 植物学报, 2004, 46(6): 631-646.
    [6] Schurr U. Xylem sap sampling: New approaches to an old topic[J]. Trends Plant Sci, 1998, 3(8): 293-298.
    [7] Smith D M, Allen S J. Measurements of sap flow in plant stems [J]. J Exp Bot, 1996, 47(12): 1833-1844.
    [8] Swanson R H, Whitfield D W A. A numerical analysis of heat pulse velocity theory and practice [J]. J Exp Bot, 1981, 32(1): 221-239.
    [9] Cohen Y, Li Y. Validating sap flow measurement in field-grown sunflower and corn [J]. J Exp Bot, 1996, 47(11): 1699-1707.
    [10] Lu P, Woo K C, Liu Z T. Estimation of whole-plant transpiration of bananas using sap flow measurements [J]. J Exp Bot, 2002, 53(375): 1771-1779.
    [11] Madurapperuma W S, Blebyb T M, Burgess S S O. Evaluation of sap flow methods to determine water use by cultivated palms[J]. Environ Exp Bot, 2009, 66(3): 372-380.
    [12] Granier A. Une nouvelle méthod pour la mesure du flux de séve brute dans le tronc des arbres [J]. Ann For Sci, 1985, 42(2): 193-200.
    [13] Cabibel B, Do F. Mesures thermiques des flux de seve dans les troncs et les racines et fonctionnement hydrique des arbres: Ⅰ. Analyse theorique des erreurs sur la mesure des flux et validation des mesures en presence de gradients thermiques exterieurs [J]. Agronomie, 1991, 11(8): 669-678.
    [14] Lu P, Chacko E. Evaluation of Granier's sap flux sensor in young mango trees [J]. Agronomie, 1998, 18(7): 461-471.
    [15] Braun P, Schmid J. Sap flow measurements in grapevines (Vitis vinifera L.): 2. Granier measurements [J]. Plant Soil, 1999, 215(1): 47-55.
    [16] Clearwater M J, Meinzer F C, Andrade J L, et al. Potential errors in measurement of nonuniform sap flow using heat dissipation probes [J]. Tree Physiol, 1999, 19(10): 681-687.
    [17] Catovsky S, Holbrook N M, Bazzaz F A. Coupling whole-tree transpiration and canopy photosynthesis in coniferous and broadleaved tree species [J]. Can J For Res, 2002, 32(2): 295-309.
    [18] McCulloh K A K, Winter F C, Meinzer M, et al. A comparison of daily water use estimates derived from constant-heat sapflow probe values and gravimetric measurements in pot-grown saplings [J]. Tree Physiol, 2007, 27(9): 1355-1360.
    [19] Granier A, Bobay J H C, Gash J, et al. Vapour flux density and transpiration rate comparisons in a stand of Maritime pine (Pinus pinaster Ait.) in Les Landes forest [J]. Agri For Meteorol, 1990, 51(3/4): 309-319.
    [20] Köstner B P, Biron R, Siegwolf, et al. Estimates of water vapor flux and canopy conductance of Scots pine at the tree level utilizing different xylem sap flow methods [J]. Theor Appl Climatol, 1996, 53(1/2/3): 105-113.
    [21] Saugier B, Granier A, Pontailler J Y, et al. Transpiration of a boreal pine forest measured by branch bag, sap flow and micrometeorological methods [J]. Tree Physiol, 1997, 17(8/9): 511-519.
    [22] Tournebize R, Boistard S. Comparison of two sap flow methods for the estimation of tree transpiration [J]. Ann For Sci, 1998, 55(6): 707-713.
    [23] Ewers B E, Oren R, Kim H S, et al. Effects of hydraulic architecture and spatial variation in light on mean stomatal conductance of tree branches and crowns [J]. Plant Cell Environ, 2007, 30(4): 483-496.
    [24] Ford C R, Hubbard R M, Kloeppel B D, et al. A comparison of sap flux-based evapotranspiration estimates with catchment-scale water balance [J]. Agri For Meteorol, 2007, 145(3/4): 176-185.
    [25] Taneda H, Sperry J S. A case-study of water transport in cooccurring ring-versus diffuse-porous trees: Contrasts in waterstatus, conducting capacity, cavitation and vessel refilling [J]. Tree Physiol, 2008, 28(11): 1641-1651.
    [26] Steppe K, Pauw D J W, Doody T M, et al. A comparison of sap flux density using thermal dissipation, heat pulse velocity and heat field deformation methods [J]. Agri For Meteorol, 2010, 150(7/8): 1046-1056.
    [27] Hultine K R, Nagler P L, Morino K, et al. Sap flux-scaled transpiration by tamarisk (Tamarix spp.) before, during and after episodic defoliation by the saltcedar leaf beetle (Diorhabda carinulata)[J]. Agri For Meteorol, 2010, 150(11): 1467-1475.
    [28] Bush S E, Hultine K R, Sperry J S, et al. Calibration of thermal dissipation sap flow probes for ring and diffuse porous trees [J]. Tree Physiol, 2010, 30(12): 1545-1554.
    [29] Zhao P, Mei T T, Ni G Y, et al. Application of thermal dissipation sap flow measuring system in investigating bamboo transpiration: Problems and solutions [J]. Chin J Ecol, 2012, 31(1): 187-193. 赵平, 梅婷婷, 倪广艳, 等. 热消散液流测定系统研究竹子蒸腾 的问题和解决思路 [J]. 生态学杂志, 2012, 31(1): 187-193.
    [30] Ma L, Zhao P, Rao X Q, et al. Effects of environmental factors on sap flow in Acacia mangium [J]. Acta Ecol Sin, 2005, 25(9): 2145-2151. 马玲, 赵平, 饶兴权, 等. 马占相思树干液流特征及其与环境因 子的关系 [J]. 生态学报, 2005, 25(9): 2145-2151.
    [31] Lin W T. Studies on the vascular bundles of some casespitose bamboos in China [J]. Acta Phytotaxon Sin, 1980, 18(3): 309-315. 林万涛. 几种丛生竹维管束的研究 [J]. 植物分类学报, 1992, 18(3): 309-315.
    [32] Dierick D, Hölscher D, Schwendenmann L. Water use characteristics of a bamboo species (Bambusa blumeana) in the Philippines [J]. Agri For Meteorol, 2010, 150(12): 1568-1578.
    [33] Kume T, Onozawa Y, Komatsu H, et al. Stand-scale transpiration estimates in a moso bamboo forest: (I) Applicability of sap flux measurements [J]. For Ecol Manag, 2010, 260(8) 1287-1294.
    [34] Green S, Clothier B, Jardine B. Theory and practical application of heat pulse to measure sap flow [J]. Agron J, 2003, 95(6): 1371-1379.
    引证文献
引用本文

赵秀华,赵平,周娟,张振振,孙振伟.热消散法(TDP)在5种竹子蒸腾耗水测定中的适用性评价[J].热带亚热带植物学报,2015,23(5):567~575

复制
分享
文章指标
  • 点击次数:2122
  • 下载次数: 2076
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2014-12-19
  • 最后修改日期:2015-04-18
  • 录用日期:2015-04-22
  • 在线发布日期: 2015-10-14
文章二维码