果蔗SoSGT1与Gibberella fujikuroi侵染下果蔗叶片蛋白的互作研究
作者:
作者单位:

福建农林大学生命科学学院,福建农林大学生命科学学院,福建农林大学生命科学学院,福建农林大学生命科学学院,福建农林大学生命科学学院

基金项目:

福建省自然科学基金项目(2013J05043); 福建省教育厅重点项目(JA11075); 国家自然科学基金项目(31401950)资助


Studies on Interaction between SoSGT1 and Proteins in Leaves of Chewing Cane Infected by Gibberella fujikuroi
Author:
Affiliation:

School of Life Scienses, Fujian Agriculture and Forestry University, China,School of Life Scienses, Fujian Agriculture and Forestry University, China,School of Life Scienses, Fujian Agriculture and Forestry University, China,School of Life Scienses, Fujian Agriculture and Forestry University, China,School of Life Scienses, Fujian Agriculture and Forestry University, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [48]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为了解果蔗(Saccharum officenarum L.)在防御Gibberella fujikuroi 过程中与SoSGT1 互作的蛋白,利用GST 蛋白标签载体pGEX-6p-1 与果蔗SoSgt1 基因构建pGEX-6p-1-sgt1 表达载体,诱导表达GST-SoSGT1 融合蛋白,并通过GST pull down 技术捕捉到7 个与SoSGT1 互作蛋白.这些蛋白的功能主要归类为信号转导、抗逆与能量代谢相关蛋白,其中一些蛋白可能与果蔗SoSGT1 直接互作,如HSP90 与RAR1 蛋白,另外一些蛋白与果蔗SoSGT1 可能产生次级互作.在G. fujikuroi 侵染果蔗‘福农’叶片时,HSP70、14-3-3 蛋白、2-半胱氨酸-过氧化物酶与吡哆醇生物合成蛋白的编码基因呈上调表达,初步说明这些蛋白可能与SoSGT1 蛋白互作共同参与了果蔗防御梢腐病病原G. fujikuroi的病理过程.

    Abstract:

    In order to understand the interaction proteins with SoSGT1 during chewing cane (Saccharum officenarum L.) in denfense Gibberella fujikuroi, SoSgt1 and vector pGEX-6p-1 was used to construct vector pGEX-6p-1-sgt1, which expressed fusion protein of GST-SoSGT1. Seven proteins were obtained by GST pull down. The function of these proteins was classified into signal transduction, stress resistance and energy metabolism, in which might directly interact with SoSGT1, such as HSP90 and RAR1, and others might indirectly interact with SoSGT1. When the leaves of chewing cane ‘Fuan’ were infected by G. fujikuroi, the expression of coding genes of HSP70, 14-3-3 protein, 2-Cys-peroxiredoxin and pyridoxine biosynthesis protein was up-regulated, which indicated that these proteins might interact with SoSGT1 and associate with the resistance of chewing cane to G. fujikuroi.

    参考文献
    [1] Wu S H, Zhang S H, Lin Y X. Developing Fujian's chewing-cane industry and realizing cycle low carbon agriculture [J]. Guangxi Trop Agri, 2010(4): 48-50. 吴松海, 张树河, 林一心. 发展福建省果蔗产业 实现循环低碳 农业 [J]. 广西热带农业, 2010(4): 48-50.
    [2] Lin Y X. Discussion on organic chewing cane development in China [J]. Sugar Crops China, 2011(2): 72-74. 林一心. 对我国有机果蔗发展的思考 [J]. 中国糖料, 2011(2): 72-74.
    [3] Lu G D, Li C C, Pan C Z, et al. Sugarcane diseases in China [J]. Sugarcane, 1997, 4(4): 19-23. 鲁国东, 黎常窗, 潘崇忠, 等. 中国甘蔗病害名录 [J]. 甘蔗, 1997, 4(4): 19-23.
    [4] Li L S. Simple list of common sugarcane diseases [J]. Fujian Sugarcane, 2005(2): 29-32. 李腊生. 甘蔗常见病害简易检索表 [J]. 福建甘蔗, 2005(2): 29-32.
    [5] Zhou G H, Xu D L, Shen W K. On sugarcan major diseases and their controlling [J]. Sugar Cane, 2005(1): 11-16. 周国辉, 许东林, 沈万宽. 甘蔗重要病害研究及防治策略 [J]. 甘 蔗糖业, 2005(1): 11-16.
    [6] Wang B H. The occurrence status and the research progress of sugarcane disease in China [J]. Sugar Crops China, 2007(3): 48-51. 王伯辉. 我国甘蔗病害的发生现状与研究进展 [J]. 中国糖料, 2007(3): 48-51.
    [7] Feys B J, Parker J E. Interplay of signaling pathways in plant disease resistance [J]. Trends Genet, 2000, 16(10): 449-455.
    [8] Dangl J L, Jones J D G. Plant pathogens and integrated defense responses to infection [J]. Nature, 2001, 411(6839): 826-833.
    [9] Meur G, Budatha M, Gupta A D, et al. Differential induction of NPR1 during defense responses in Brassica juncea [J]. Physiol Mol Plant Pathol, 2006, 68(4-6): 128-137.
    [10] Pajerowska-Mukhtar K M, Emerine D K, Mukhtar M S. Tell memore: Roles of NPRs in plant immunity [J]. Trends Plant Sci, 2013, 18(7): 402-411.
    [11] Bhaskar P B, Raasch J A, Kramer L C, et al. Sgt1, but not Rar1, is essential for the RB-mediated broad-spectrum resistance to potato late blight [J/OL]. BMC Plant Biol, 2008, 8: 8. doi: 10.1186/ 1471-2229-8-8.
    [12] Kadota Y, Amigues B, Ducassou L, et al. Structural and functional analysis of SGT1-HSP90 core complex required for innate immunity in plants [J]. EMBO Rep, 2008, 9(12): 1209-1215.
    [13] Chen G S, Zhou Y F, Hou L L, et al. Cloning and characterization of full length cDNA of a CC-NBS-LRR resistance gene in sweet potato [J]. Agri Sci China, 2009, 8(5): 538-545.
    [14] Wu Y L, Yi G J, Peng X X, et al. Systemic acquired resistance in Cavendish banana induced by infection with an incompatible strain of Fusarium oxysporum f. sp. cubense [J]. J Plant Physiol, 2013, 170(11): 1039-1046.
    [15] Cuzick A, Lee S, Gezan S, et al. NPR1 and EDS11 contribute to host resistance against Fusarium culmorum in Arabidopsis buds and flowers [J]. Mol Plant Pathol, 2008, 9(5): 697-704.
    [16] Seo Y S, Lee S K, Song M Y, et al. The HSP90-SGT1-RAR1 molecular chaperone complex: A core modulator in plant immunity[J]. J Plant Biol, 2008, 51(1): 1-10.
    [17] Han S W, Jung H W. Molecular sensors for plant immunity, pattern recognition receptors and race-specific resistance proteins[J]. J Plant Biol, 2013, 56(6): 357-366.
    [18] Hou S, Zhang C, Yang Y, et al. Recent advances in plant immunity: Recognition, signaling, response, and evolution [J]. Biol Plant, 2013, 57(1): 11-25.
    [19] Rochon A, Boyle P, Wignes T, et al. The coactivator function of Arabidopsis NPR1 requires the core of its BTB/POZ domain and the oxidation of C-terminal cysteines [J]. Plant Cell, 2006, 18(12): 3670-3685.
    [20] Zhou F S, Mosher S, Tian M Y, et al. The Arabidopsis gain-offunction mutant ssi4 requires RAR1 and SGT1b differentially for defense activation and morphological alterations [J]. Mol Plant Microbe Interact, 2008, 21(1): 40-49.
    [21] Li W M, Wang Z X, Jia S R. Over expression of GbRac1 gene in transgenic tobacco enhances disease resistance to Alternaria alternate in vitro [J]. J Agri Biotechn, 2004, 12(4): 353-356. 李为民, 王志兴, 贾士荣. 海岛棉GbRac1基因过量表达提高转 基因烟草离体叶片对赤星病的抗性 [J]. 农业生物技术学报, 2004, 12(4): 353-356.
    [22] Wang X J, Dou D L, Wang Z X, et al. Clonging full-length cDNA of GbNPR1 gene from Gossypium barbadense and its expression in transgenic tobacco [J]. Sci Agri Sin, 2006, 39(5): 886-894. 王旭静, 窦道龙, 王志兴, 等. 海岛棉GbNPR1基因全长cDNA 的克隆及其在烟草中的表达 [J]. 中国农业科学, 2006, 39(5): 886-894.
    [23] Liao Y, Zhang Z Y, Du L P, et al. Isolation of RAR1 gene form Thinopyrum intermedium and analysis of its function in wheat background [J]. Sci Agri Sin, 2007, 40(8): 1667-1674. 廖勇, 张增艳, 杜丽璞, 等. 中间偃麦草RAR1基因的分离及 其在小麦背景中的功能分析 [J]. 中国农业科学, 2007, 40(8): 1667-1674.
    [24] Wang K, Du L P, Zhang Z Y, et al. Isolation and preliminarily functional analysis of SGT1 gene of Thinopyrum intermedium [J]. Acta Agron Sin, 2008, 34(3): 520-525. 王凯, 杜丽璞, 张增艳, 等. 中间偃麦草SGT1基因的克隆及其 抗病功能的分析 [J]. 作物学报, 2008, 34(3): 520-525.
    [25] Cai X Z, Xu Q F, Wang C C, et al. Development of a virusinduced gene-silencing system for functional analysis of the RPS2-dependent resistance signalling pathways in Arabidopsis[J]. Plant Mol Biol, 2006, 62(1/2): 223-232.
    [26] Shang Y L, Li X Y, Cui H T, et al. RAR1, a central player in plant immunity, is targeted by Pseudomonas syringae effector AvrB [J]. Proc Natl Acad Sci USA, 2006, 103(50): 19200- 19205.
    [27] Yuan Y X, Zhong S H, Li Q, et al. Functional analysis of rice NPR1-like genes reveals that OsNPR1/NH1 is the rice orthologue conferring disease resistance with enhanced herbivore susceptibility[J]. Plant Biotechn J, 2007, 5(2): 313-324.
    [28] Thao N P, Chen L T, Nakashima A, et al. RAR1 and HSP90 form a complex with Rac/Rop GTPase and function in innate-immune responses in rice [J]. Plant Cell, 2007, 19(12): 4035-4045.
    [29] Lin S, Zhou Y F, Chen G S, et al. Molecular responses to the fungal pathogen Gibberella fujikuroi in the leaves of chewing cane (Saccharum officinarum L.) [J]. Sugar Techn, 2010, 12(1): 36-46.
    [30] Lin S, Zhou M M, Chen T, et al. The expression analysis of pathogenesis-related protein encoding genes in chewing cane leaves infected by Gibberella fujikuroi [J]. J Trop Subtrop Bot, 2012, 20(2): 141-148. 林生, 周明明, 陈婷, 等. Gibberella fujikuroi侵染果蔗叶片病 程相关蛋白编码基因的表达分析 [J]. 热带亚热带植物学报, 2012, 20(2): 141-148.
    [31] Lin S, Pan D R, Zhou Y F, et al. Cloning of SoSgtl and construction from chewing cane of antisense vector [J]. J Trop Organ, 2010, 1(1): 1-7. 林生, 潘大仁, 周以飞, 等. 果蔗SoSgt1基因的克隆表达与植物 反义表达载体的构建 [J]. 热带生物学报, 2010, 1(1): 1-7.
    [32] Wang Y F, Zhang Y, Jia L L. A Guide to the Protein-protein Interaction Experiments [M]. Beijing: Chemical Industry Press, 2010: 1-183. 王玉飞, 张影, 贾雷立. 蛋白质相互作用实验指南 [M]. 北京: 化学工业出版社, 2010: 1-183.
    [33] Wang H, Zeng X. Analysing protein-protein interactions using a GST-fusion protein to pull down the interacting target from the cell lysate [J]. Techn Tips Online, 2000, 5(1): 26-30.
    [34] Ren L, Chang E, Makky K, et al. Glutathione S-transferase pulldown assays using dehydrated immobilized glutathione resin [J]. Anal Biochem, 2003, 322(2): 164-169.
    [35] Meng Q S, Rao L Q, Pan Y H. Enrichment and analysis of rice seedling ubiquitin-related proteins using four UBA domains (GSTqUBAs)[J]. Plant Sci, 2014, 229: 172-180.
    [36] Scofield S R, Huang L, Brandt A S, et al. Development of a virusinduced gene-silencing system for hexaploid wheat and its use in functional analysis of the Lr21-mediated leaf rust resistance pathway [J]. Plant Physiol, 2005, 138(4): 2165-2173.
    [37] Lin S, Pan D R, Zhou Y F, et al. Construction of antisense expression vector of Rar1 fragment and transforming into chewing Cane [J]. Chin Agri Sci Bull, 2009, 25(21): 64-68. 林生, 潘大仁, 周以飞, 等. 果蔗Rar1基因反义载体的构建及遗 传转化初步研究 [J]. 中国农学通报, 2009, 25(21): 64-68.
    [38] Lin S, Pan D R, Zhou Y F, et al. Electronic cloning and sequencing of HSP90 gene from chewing cane [J]. Chin J Trop Crops, 2009, 30(12): 1824-1830. 林生, 潘大仁, 周以飞, 等. 果蔗HSP90基因的电子克隆及序列 分析 [J]. 热带作物学报, 2009, 30(12): 1824-1830.
    [39] de Boer A H, van Kleeff P J M, Gao J. Plant 14-3-3 proteins as spiders in a web of phosphorylation [J]. Protoplasma, 2013, 250(2): 425-440.
    [40] Rosenquist M, Alsterfjord M, Larsson C, et al. Data mining the Arabidopsis genome reveals fifteen 14-3-3 genes: Expression is demonstrated for two out of five novel genes [J]. Plant Physiol, 2001, 127(1): 142-149.
    [41] Kim S Y, Jang H H, Lee J R, et al. Oligomerization and chaperone activity of a plant 2-Cys peroxiredoxin in response to oxidative stress [J]. Plant Sci, 2009, 177(3): 227-232.
    [42] Baier M, Dietz K J. The plant 2-Cys peroxiredoxin BAS1 is a nuclear-encoded chloroplast protein: Its expressional regulation, phylogenetic origin, and implications for its specific physiological function in plants [J]. Plant J, 1997, 12(1): 179-190.
    [43] Dietz K J, Jacob S, Oelze M L, et al. The function of peroxiredoxins in plant organelle redox metabolism [J]. J Exp Bot, 2006, 57(8): 1697-1709.
    [44] Jang H H, Lee K O, Chi Y H, et al. Two enzymes in one: Two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function [J]. Cell, 2004, 117(5): 625-635.
    [45] Kim M D, Kim Y H, Kwon S Y, et al. Overexpression of 2-cysteine peroxiredoxin enhances tolerance to methyl viologen-mediated oxidative stress and high temperature in potato plants [J]. Plant Physiol Biochem, 2011, 49(8): 891-897.
    [46] van Loon L C, Rep M, Pieterse C M J. Significance of inducible defense-related proteins in infected plants [J]. Annu Rev Phytopathol, 2006, 44: 135-162.
    [47] Li R, Meng X P, Hu Y K, et al. The clone and phylogenetic analysis of pyridoxine biosynthesis gene in Truncate alfalfa [J]. Jiangsu Agri Sci, 2007(1): 81-84. 李蕊, 孟宪萍, 胡英考, 等. 截形苜蓿吡哆醇生物合成基因的电 子克隆和进化分析 [J]. 江苏农业科学, 2007(1): 81-84.
    [48] Wang H B, Liu D C, Liu C G, et al. The pyridoxal kinase gene TaPdxK from wheat complements vitamin B6 synthesis-defective Escherichia coli [J]. J Plant Physiol, 2004, 161(9): 1053-1060.
引用本文

林生,陈婷,周明明,陈观水,林文雄.果蔗SoSGT1与Gibberella fujikuroi侵染下果蔗叶片蛋白的互作研究[J].热带亚热带植物学报,2015,23(3):252~261

复制
分享
文章指标
  • 点击次数:1959
  • 下载次数: 2935
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2014-10-13
  • 最后修改日期:2014-12-19
  • 录用日期:2015-01-22
  • 在线发布日期: 2015-05-21
文章二维码