竹子分子生物学研究进展
作者:
作者单位:

亚热带森林培育国家重点实验室培育基地,浙江农林大学亚热带森林培育国家重点实验室培育基地

基金项目:

This work was supported by the National Natural Science Foundation of China (31270645, 31170565), and Talents Program of Natural Science Foundation of Zhejiang Province (LR12C16001).


Recent Advances in Bamboo Molecular Biology
Author:
Affiliation:

Nurturing Station for the State Key Laboratory of Subtropical Silviculture,The Nurturing Station of the State Key Laboratory of Subtropical Silviculture, Zhejiang A

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [71]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    对2003 年以来的竹子分子生物学研究进展进行了综述,包括现代分子手段在竹子分类学研究中的开发与应用,鞭芽发育、快速生长、开花、抗逆等相关的重要功能基因研究,基因组测序和转录组测序,遗传转化体系的建立等。这些为今后竹子生物学的研究提供了依据。

    Abstract:

    Bamboo species (Poaceae: Bambusoideae) possess a distinct life history characterized by a predominance of rhizome-dependent asexual reproduction and erratic flowering at intervals of 1 year to 120 years. Some bamboo species are of notable economic, ecological and social significance throughout the World. Considerable progress has been made in bamboo research in the past few years. The advances in bamboo molecular biology since 2003 were reviewed, including the development and application of modern molecular tools in the taxonomy; the cloning and characterization of key genes involved in the critical biological processes of bamboo, such as rhizome bud development, rapid growth, flowering and stress-tolerance; the accomplishment of bamboo genome and transcriptome sequencing projects; and the establishment of genetic transformation systems. The progresses in bamboo molecular biology research provide new insights into further biological studies in Bamboo.

    参考文献
    [1] Bamboo Phylogeny Group. An updated tribal and subtribal classification of the bamboos (Poaceae: Bambusoideae) [J]. Bamboo Sci Cult, 2012, 24(1): 1-10.
    [2] Sun Y, Xia N H, Stapleton C M A. Relationships between Bambusa species (Poaceae, Bambusoideae) revealed by random amplified polymorphic DNA [J]. Biochem Syst Ecol, 2006, 34(5): 417-423.
    [3] Pattanaik S, Hall J B. Molecular evidence for polyphyly in the woody bamboo genus Dendrocalamus (subtribe Bambusinae) [J]. Plant Syst Evol, 2011, 291(1/2): 59-67.
    [4] Ramanayake S, Meemaduma V, Weerawardene T. Genetic diversity and relationships between nine species of bamboo in Sri Lanka, using random amplified polymorphic DNA [J]. Plant Syst Evol, 2007, 269(1/2): 55-61.
    [5] Das M, Bhattacharya S, Basak J, et al. Phylogenetic relationships among the bamboo species as revealed by morphological characters and polymorphism analyses [J]. Biol Plant, 2007, 51(4): 667-672.
    [6] Gamble J S. Bambuseae of British India [J]. Ann R Bot Gard Calcutta, 1896, 7(1): 1-133.
    [7] Bennet S S R, Gaur R C, Sharma P. Thirty seven bamboos growing in India [D]. Dehra Dun: Forest Research Institute, 1990: 17-18.
    [8] Nayak S, Rout G R, Das P. Evaluation of the genetic variability in bamboo using RAPD markers [J]. Plant Soil Environ, 2003, 49(1): 24-28.
    [9] Lin X C, Lou Y F, Zhang Y Z, et al. Identification of genetic diversity among cultivars of Phyllostachys violascens using ISSR, SRAP and AFLP markers [J]. Bot Rev, 2011, 77(3): 223-232.
    [10] Lin X C, Ruan X S, Lou Y F, et al. Genetic similarity among cultivars of Phyllostachys pubescens [J]. Plant Syst Evol, 2009, 277(1/2): 67-73.
    [11] Tang D Q, Lu J J, Fang W, et al. Development, characterization and utilization of GenBank microsatellite markers in Phyllostachys pubescens and related species [J]. Mol Breed, 2010, 25(2): 299-311.
    [12] Lu J J, Yoshinaga K, Fang W, et al. Identification of the hybrid bamboo F1 by SSR markers [J]. Sci Silv Sin, 2009, 45(3): 29-34. (in Chinese)
    [13] Wu M D, Dong W J, Tang D Q. Identification of four caespitose hybrid bamboos by using SSR markers [J]. Mol Plant Breed, 2009, 7(5): 959-965. (in Chinese)
    [14] Dong W J, Wu M D, Lin Y, et al. Evaluation of 15 caespitose bamboo EST-SSR markers for cross-species/genera transferability and ability to identify interspecies hybrids [J]. Plant Breed, 2011, 130(5): 596-600.
    [15] Nayak S, Rout G R. Isolation and characterization of microsatellites in Bambusa arundinacea and cross species amplification in other bamboos [J]. Plant Breed, 2005, 124(6): 599-602.
    [16] Kaneko S, Franklin D C, Yamasaki N, et al. Development of microsatellite markers for Bambusa arnhemica (Poaceae: Bambuseae), a bamboo endemic to northern Australia [J]. Conserv Genet, 2008, 9(5): 1311-1313.
    [17] Kitamura K, Saitoh T, Matsuo A, et al. Development of microsatellite markers for the dwarf bamboo species Sasa cernua and Sasa kurilensis (Poaceae) in northern Japan [J]. Mol Ecol Resour, 2009, 9(6): 1470-1472.
    [18] Sharma V, Bhardwaj P, Kumar R, et al. Identification and crossspecies amplification of EST derived SSR markers in different bamboo species [J]. Conserv Genet, 2009, 10(3): 721-724.
    [19] Barkley N, Newman M, Wang M, et al. Assessment of the genetic diversity and phylogenetic relationships of a temperate bamboo collection by using transferred EST-SSR markers [J]. Genome, 2005, 48(4): 731-737.
    [20] Sharma R, Gupta P, Sharma V, et al. Evaluation of rice and sugarcane SSR markers for phylogenetic and genetic diversity analyses in bamboo [J]. Genome, 2008, 51(2): 91-103.
    [21] Chen S Y, Lin Y T, Lin C W, et al. Transferability of rice SSR markers to bamboo [J]. Euphytica, 2010, 175(1): 23-33.
    [22] Sungkaew S, Stapleton C M, Salamin N, et al. Non-monophyly of the woody bamboos (Bambuseae: Poaceae): A multi-gene region phylogenetic analysis of Bambusoideaess [J]. J Plant Res, 2009, 122(1): 95-108.
    [23] Kelchner S A. Higher level phylogenetic relationships within the bamboos (Poaceae: Bambusoideae) based on five plastid markers [J]. Mol Phylogenet Evol, 2013, 67(2): 404-413.
    [24] Zhang Y J, Ma P F, Li D Z. High-throughput sequencing of six bamboo chloroplast genomes: Phylogenetic implications for temperate woody bamboos (Poaceae: Bambusoideae) [J]. Plos One, 2011, 6(5): e20596.
    [25] Guo Z H, Li D Z. Phylogenetics of the Thamnocalamus group and its allies (Gramineae: Bambusoideae): Inference from the sequences of GBSSI gene and ITS spacer [J]. Mol Phylogenet Evol, 2004, 30(1): 1-12.
    [26] Wu Z Q, Ge S. The phylogeny of the BEP clade in grasses revisited: Evidence from the whole-genome sequences of chloroplasts [J]. Mol Phylogenet Evol, 2012, 62(1): 573-578.
    [27] Zhang Y X, Zeng C X, Li D Z. Complex evolution in Arundinarieae (Poaceae: Bambusoideae): Incongruence between plastid and nuclear GBSSI gene phylogenies [J]. Mol Phylogenet Evol, 2012, 63(3): 777-797.
    [28] Zeng C X, Zhang Y X, Triplett J K, et al. Large multi-locus plastid phylogeny of the tribe Arundinarieae (Poaceae: Bambusoideae) reveals ten major lineages and low rate of molecular divergence[J]. Mol Phylogenet Evol, 2010, 56(2): 821-839.
    [29] Ruiz-Sanchez E, Sosa V. Delimiting species boundaries within the neotropical bamboo Otatea (Poaceae: Bambusoideae) using molecular, morphological and ecological data [J]. Mol Phylogenet Evol, 2010, 54(2): 344-356.
    [30] Peng H Z, Lin E P, Sang Q L, et al. Molecular cloning, expression analyses and primary evolution studies of REV-and TB1-like genes in bamboo [J]. Tree Physioly, 2007, 27(9): 1273-1281.
    [31] Wang K, Peng H, Lin E, et al. Identification of genes related to the development of bamboo rhizome bud [J]. J Exp Bot, 2010, 61(2): 551-561.
    [32] Yeh S H, Lee B H, Liao S C, et al. Identification of genes differentially expressed during the growth of Bambusa oldhamii[J]. Plant Physiol Biochem, 2013, 63(1): 217-226.
    [33] Zhou M B, Yang P, Gao P J, et al. Identification of differentially expressed sequence tags in rapidly elongating Phyllostachys pubescens internodes by suppressive subtractive hybridization[J]. Plant Mol Biol Rep, 2011, 29(1): 224-231.
    [34] Cui K, He C Y, Zhang J G, et al. Temporal and spatial profiling of internode elongation-associated protein expression in rapidly growing culms of bamboo [J]. J Proteome Res, 2012, 11(4): 2492-2507.
    [35] Chiu W B, Lin C H, Chang C J, et al. Molecular characterization and expression of four cDNAs encoding sucrose synthase from green bamboo Bambusa oldhamii [J]. New Phytol, 2006, 170(1): 53-63.
    [36] Chen C Y, Hsieh M H, Yang C C, et al. Analysis of the cellulose synthase genes associated with primary cell wall synthesis in Bambusa oldhamii [J]. Phytochemistry, 2010, 71(11/12): 1270-1279.
    [37] Hsieh L S, Ma G J, Yang C C, et al. Cloning, expression, sitedirected mutagenesis and immunolocalization of phenylalanine ammonialyase in Bambusa oldhamii [J]. Phytochemistry, 2010, 71(17): 1999-2009.
    [38] Li X P, Gao Z M, Peng Z H, et al. Cloning and characterization of COMT gene from Bambusa oldhamii [J]. For Res, 2007, 20(5): 722-725. (in Chinese)
    [39] Li X P, Gao Z M, Peng Z H. Cloning and characterization of CCoAOMT gene from Bambusa oldhamii [J]. Mol Plant Breed, 2008, 6(3): 587-592. (in Chinese)
    [40] Yang X W, Peng Z H, Gao Z M, et al. Study on the cloning and expression of a p-coumarate 3-hydroxylase gene in Phyllostachys edulis [J]. J Anhui Agri Sci, 2009, 37(29): 14051-14053,14197. (in Chinese)
    [41] Jin S Y, Lu M Z, Gao J. Cloning and expression analysis of the C4H gene involved in the lignin biosynthesis in Phyllostachys edulis [J]. For Res, 2010, 23(3): 319-325. (in Chinese)
    [42] Yang X W, Peng Z H. Cloning and expression of a cytochrome P450 gene from moso bamboo [J]. J Anhui Agri Univ, 2010, 37(1): 116-121. (in Chinese)
    [43] Tian B, Chen Y Y, Yan Y X, et al. Isolation and ectopic expression of a bamboo MADS-box gene [J]. Chin Sci Bull, 2005, 50(3): 217-224.
    [44] Lin E P, Peng H Z, Jin Q Y, et al. Identification and characterization of two Bamboo (Phyllostachys praecox) AP1/SQUAlike MADS-box genes during floral transition [J]. Planta, 2009, 231(1): 109-120.
    [45] Gao Z M, Zheng B, Peng Z H. Isolation of PeMADS1 gene from Phyllostachys edulis and its transformation in Arabidopsis thaliana [J]. Sci Silv Sin, 2009, 46(10): 37-41. (in Chinese)
    [46] Cui L L, Yang H Q, Yang Y M. Cloning and sequence analysis of CONSTANS homologous gene from Dendrocalamus xishuangbannaensis[J]. For Res, 2010, 23(1): 1-5. (in Chinese)
    [47] Lin X C, Chow T Y, Chen H H, et al. Understanding bamboo flowering based on large-scale analysis of expressed sequence tags [J]. Genet Mol Res, 2010, 9(2): 1085-1093.
    [48] Zhang X M, Zhao L, Larson-Rabin Z, et al. De novo sequencing and characterization of the floral transcriptome of Dendrocalamus latiflorus (Poaceae: Bambusoideae) [J]. Plos One, 2012, 7(8): e42082.
    [49] Liu Z W, Zhang Z J, Yang L. cDNA cloning and sequence analysis of a zinc-finger protein gene involved in stress-tolerance in Phyllostachys edulis [J]. Biotechn Bull, 2010(1): 87-92. (in Chinese)
    [50] Yang Y, Zhang Z J, Luo S P. Cloning and sequence analysis of glyceraldehyde-3-phosphate dehydrogenase gene in Phyllostachys pubescens [J]. Nonwood For Res, 2010, 28(3): 7-13,24. (in Chinese)
    [51] Zhang Y, Gao J, Xu Y M. Cloning and sequencing analysis of β-1,3-glucanase gene from moso bamboo [J]. Mol Plant Breed, 2010, 8(3): 533-541.
    [52] Zhang Z J, Yang Y, Luo S P, et al. Molecular cloning and expression analysis of a vacuolar Na+/H+ antiporter gene in moso bamboo[J]. J Agri Biotechn, 2011, 19(1): 69-76. (in Chinese)
    [53] Nakayashiki H. The Trickster in the genome: Contribution and control of transposable elements [J]. Genes Cells, 2011, 16(8): 827-841.
    [54] Zhou M B, Liu X M, Tang D Q. Transposable elements in Phyllostachys pubescens (Poaceae) genome survey sequences and the full-length cDNA sequences, and their association with simple-sequence repeats [J]. Genet Mol Res, 2011, 10(4): 3026-3037.
    [55] Peng Z H, Lu Y, Li L B, et al. The draft genome of the fastgrowing non-timber forest species moso bamboo (Phyllostachys heterocycla) [J]. Nat Genet, 2013, 45(4): 456-461.
    [56] Zhou M B, Zhong H, Zhang Q H, et al. Diversity and evolution of Ty1-copia retroelements in representative tribes of Bambusoideae subfamily [J]. Genetica, 2010, 138(8): 861-868.
    [57] Zhou M B, Lu J J, Zhong H, et al. Distribution and diversity of PIF-like transposable elements in the Bambusoideae subfamily[J]. Plant Sci, 2010, 179(3): 257-266.
    [58] Zhong H, Zhou M B, Xu C M, et al. Diversity and evolution of Pong-like elements in Bambusoideae subfamily [J]. Biochem Syst Ecol, 2010, 38(4): 750-758.
    [59] Zhou M B, Lu J J, Zhong H, et al. Distribution and polymorphism of mariner-like elements in the Bambusoideae subfamily [J]. Plant Syst Evol, 2010, 289(1/2): 1-11.
    [60] Zhou M B, Zhong H, Tang D Q. Isolation and characterization of seventy-nine full-length mariner-like transposase genes in the Bambusoideae subfamily [J]. J Plant Res, 2011, 124(5): 607-617.
    [61] Gui Y J, Zhou Y, Wang Y, et al. Insights into the bamboo genome: Syntenic relationships to rice and sorghum [J]. J Integr Plant Biol, 2010, 52(11): 1008-1015.
    [62] Peng Z H, Lu T T, Li L B, et al. Genome-wide characterization of the biggest grass, bamboo, based on 10608 putative fulllength cDNA sequences [J/OL]. BMC Plant Biol, 2010, 10: 116. doi:10.1186/1471-2229-10-116
    [63] He C Y, Cui K, Zhang J G, et al. Next-generation sequencingbased mRNA and microRNA expression profiling analysis revealed pathways involved in the rapid growth of developing culms in moso bamboo [J]. BMC Plant Biol, 2013, 13(1): 119. doi:10.1186/1471-2229-13-119
    [64] Peng Z H, Zhang C L, Zhang Y, et al. Transcriptome sequencing and analysis of the fast growing shoots of moso bamboo (Phyllostachys edulis) [J]. Plos One, 2013, 8(11): e78944.
    [65] Liu M Y, Qiao G R, Jiang J, et al. Transcriptome sequencing and de novo analysis for ma bamboo (Dendrocalamus latiflorus Munro) using the Illumina platform [J]. Plos One, 2012, 7(10): e46766.
    [66] Zhao H S, Chen D L, Peng Z H, et al. Identification and characterization of microRNAs in the leaf of ma bamboo (Dendrocalamus latiflorus) by deep sequencing [J]. Plos One, 2013, 8(10): e78755.
    [67] Zhang G, Cheng F. Elite hybrid bamboo species: Dendrocalamus latiflorus × Bambusa textilis [J]. Sci Silv Sin, 1980, 16(S1): 124-126. (in Chinese)
    [68] Wang Y X, Zhang G C, Li X W. An evaluation on shoot quality of sympodial bamboo species and their hybrids [J]. J Bamboo Res, 2005, 24(4): 39-44. (in Chinese)
    [69] Zhuo R Y, Liu X G. Factors effecting transgenic breeding of Dendrocalamus latiflorus [J]. Acta Agri Univ Jiangxi, 2004, 26(4): 551-554. (in Chinese)
    [70] Zhang L, Jiang J, Qiao G R, et al. Getting trans-codA gene regeneration bamboo of Dendrocalamus latiflorus Munro through Agrobacterium mediated method [J]. J Bamboo Res, 2012, 31(1): 1-6,14. (in Chinese)
    [71] Li X R, Hu S L, Cao Y, et al. Agrobacterium-mediated transformation of 4CL gene from Neosinocalamus affinis into Dendrocalamus farinosus [J]. Sci Silv Sin, 2012, 48(3): 38-44. (in Chinese)
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

姜可以,周明兵.竹子分子生物学研究进展[J].热带亚热带植物学报,2014,22(6):632~642

复制
分享
文章指标
  • 点击次数:2413
  • 下载次数: 1854
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2014-02-27
  • 最后修改日期:2014-06-03
  • 录用日期:2014-07-28
  • 在线发布日期: 2014-11-25
文章二维码