小果野蕉(Musa acuminata)全基因组NBS抗病基因的鉴定与分析
作者:
基金项目:

国家自然科学基金项目(31261140366,31101535);中国科学院植物资源保护与可持续利用实验室青年基金项目(Y2013720108014)资助


Identification and Characterization of NBS-encoding Disease Resistance Genes in Musa acuminata Genome
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [29]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为探讨小果野蕉(Musa acuminata)中NBS 基因的功能,基于新近发表的小果野蕉全基因组序列,对NBS 基因家族进行鉴定、分类和染色体定位,解析基因的复制特征、系统发育关系及上游启动子调控元件类别,推测这些基因在小果野蕉中可能的功能。结果表明,在小果野蕉全基因组中鉴定出125 个NBS 基因,包括78 个标准和47 个非标准NBS 基因。多数NBS 基因在染色体上以基因簇形式存在,串联复制是NBS 基因家族扩张的主要动力。系统发育分析表明标准NBS 基因形成两大分支,77 个标准NBS 基因有EST 表达支持。这为群体水平的抗病基因型筛选提供了本底信息,促进栽培香蕉分子抗病育种进程。

    Abstract:

    In order to understand the function of nucleotide-binding site disease resistance genes (NBS) in Musa acuminata, based on recent publication of draft genome sequence of M. acuminata, the genome-wide NBSencoding genes were identified, classified and chromosome located. The characteristics of gene duplications, phylogeny construction, distribution of adjacent promoter elements, expression evidences, and homologous function inferences were analyzed. The results showed that 125 NBS genes were identified from whole genome of M. acuminata, including 78 regular and 47 non-regular NBS genes. They were clustered into two clades phylogenetically, and most of the regular NBS-encoding genes resided in gene clusters and tandem duplications were predominant. Expression clues were found among 77 regular genes according to the public EST database. These would provide some fundamental information about the NBS-encoding genes in Musa species, and promote molecular disease-resistant breeding of cultivate banana.

    参考文献
    [1] Simmonds N W, Shepherd K. The taxonomy and origins of thecultivated bananas[J]. Bot J Linn Soc, 1955, 55(359): 302-312.
    [2] Ploetz R C. Panama disease: Return of the first banana menace[J].Int J Pest Manage, 1994, 40(4): 326-336.
    [3] Hammond-Kosack K E, Jones J D G. Plant disease resistancegenes[J]. Annu Rev Plant Biol, 1997, 48(1): 575-607.
    [4] Dangl J L, Jones J D G. Plant pathogens and integrated defenceresponses to infection[J]. Nature, 2001, 411(6839): 826-833.
    [5] Pei X, Li S J, Jiang Y, et al. Isolation, characterization andphylogenetic analysis of the resistance gene analogues (RGAs) inbanana (Musa spp.)[J]. Plant Sci, 2007, 172(6): 1166-1174.
    [6] Peraza-Echeverria S, Dale J L, Harding R M, et al. Characterizationof disease resistance gene candidates of the nucleotide bindingsite (NBS) type from banana and correlation of a transcriptionalpolymorphism with resistance to Fusarium oxysporum f. sp.cubense race 4[J]. Mol Breed, 2008, 22(4): 565-579.
    [7] D'Hont A, Denoeud F, Aury J M, et al. The banana (Musa acuminata) genome and the evolution of monocotyledonous plants[J]. Nature, 2012, 488(7410): 213-217.
    [8] Hall T A. BioEdit: A user-friendly biological sequence alignmenteditor and analysis program for Windows 95/98/NT[J]. NuclAcids Symp Ser, 1999, 41(1): 95-98.
    [9] Burland T G. DNASTAR's Lasergene sequence analysis software[M]//Bioinformatics Methods and Protocols. United States: HumanaPress, 1999: 71-91.
    [10] Lupas A, Van Dyke M, Stock J. Predicting coiled coils fromprotein sequences[J]. Science, 1991, 252(5009): 1162-1164.
    [11] Gu Z, Cavalcanti A, Chen F C, et al. Extent of gene duplicationin the genomes of Drosophila, nematode, and yeast[J]. Mol BiolEvol, 2002, 19(3): 256-262.
    [12] Plocik A, Layden J, Kesseli R. Comparative analysis of NBSdomain sequences of NBS-LRR disease resistance genes fromsunflower, lettuce, and chicory[J]. Mol Phylogenet Evol, 2004, 31(1): 153-163.
    [13] Thompson J D, Higgins D G, Gibson T J. CLUSTAL W: improvingthe sensitivity of progressive multiple sequence alignmentthrough sequence weighting, position-specific gap penalties andweight matrix choice[J]. Nucl Acid Res, 1994, 22(22): 4673-4680.
    [14] Huelsenbeck J P, Bollback J P. Empirical and hierarchical Bayesianestimation of ancestral states[J]. Syst Biol, 2001, 50(3): 351-366.
    [15] Ameline-Torregrosa C, Wang B B, O'Bleness M S, et al.Identification and characterization of nucleotide-binding siteleucine-rich repeat genes in the model plant Medicago truncatula[J]. Plant Physiol, 2008, 146(1): 5-21.
    [16] Higo K, Ugawa Y, Iwamoto M, et al. Plant cis-acting regulatoryDNA elements (PLACE) database: 1999[J]. Nucl Acid Res, 1999, 27(1): 297-300.
    [17] Dong J, Chen C, Chen Z. Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response[J]. Plant Mol Biol, 2003, 51(1): 21-37.
    [18] Sakuma Y, Maruyama K, Qin F, et al. Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive andheat-stress-responsive gene expression[J]. Proc Natl Acad SciUSA, 2006, 103(49): 18822-18827.
    [19] Ohme-Takagi M, Suzuki K, Shinshi H. Regulation of ethyleneinducedtranscription of defense genes[J]. Plant Cell Physiol, 2000, 41(11): 1187-1192.
    [20] Meyers B C, Kozik A, Griego A, et al. Genome-wide analysis of NBS-LRR: Encoding genes in Arabidopsis[J]. Plant Cell, 2003, 15(4): 809-834.
    [21] Zhou T, Wang Y, Chen J Q, et al. Genome-wide identificationof NBS genes in japonica rice reveals significant expansionof divergent non-TIR NBS-LRR genes[J]. Mol Genet Genom, 2004, 271(4): 402-415.
    [22] Cheng X, Jiang H Y, Zhao Y, et al. A genomic analysis ofdisease-resistance genes encoding nucleotide binding sites in Sorghum bicolor[J]. Genet Mol Biol, 2010, 33(2): 292-297.
    [23] Holub E B. The arms race is ancient history in Arabidopsis, the wildflower[J]. Nat Rev Genet, 2001, 2(7): 516-527.
    [24] Yang S, Zhang X H, Yue J X, et al. Recent duplications dominateNBS-encoding gene expansion in two woody species[J]. MolGenet Genom, 2008, 280(3): 187-198.
    [25] Tan S L, Wu S. Genome wide analysis of nucleotide-binding sitedisease resistance genes in Brachypodium distachyon[J/OL].Comp Funct Genom, 2012: 418208, doi:10.1155/2012/418208.
    [26] Richly E, Kurth J, Leister D. Mode of amplification andreorganization of resistance genes during recent Arabidopsisthaliana evolution[J]. Mol Biol Evol, 2002, 19(1): 76-84.
    [27] Monosi B, Wisser R J, Pennill L, et al. Full-genome analysis ofresistance gene homologues in rice[J]. Theor Appl Genet, 2004, 109(7): 1434-1447.
    [28] Leister D. Tandem and segmental gene duplication and recombinationin the evolution of plant disease resistance genes[J]. TrendsGenet, 2004, 20(3): 116-122.
    [29] Porter B W, Paidi M, Ming R, et al. Genome-wide analysis ofCarica papaya reveals a small NBS resistance gene family[J].Mol Genet Genom, 2009, 281(6): 609-626.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘梦雅,李伟明,吴伟,葛学军.小果野蕉(Musa acuminata)全基因组NBS抗病基因的鉴定与分析[J].热带亚热带植物学报,2014,22(5):486~494

复制
分享
文章指标
  • 点击次数:2145
  • 下载次数: 3488
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2014-01-14
  • 最后修改日期:2014-05-11
  • 在线发布日期: 2014-10-11
文章二维码