枇杷果皮响应高温强光胁迫的蛋白质组分析
作者:
作者单位:

1.福建省农业科学院果树研究所 2.福建省龙眼枇杷育种工程技术研究中心,1.福建省农业科学院果树研究所2.福建省龙眼枇杷育种工程技术研究中心,福建农林大学生命科学学院,福建农林大学生命科学学院,1.福建省农业科学院果树研究所2.福建省龙眼枇杷育种工程技术研究中心,1.福建省农业科学院果树研究所2.福建省龙眼枇杷育种工程技术研究中心,福建农林大学生命科学学院

基金项目:

公益性行业(农业)科研专项经费项目(201003073);农业部作物种质资源保护项目(NB2130135);农业部热带作物种质资源保护项目(13RZZY-15);农业部农业科研杰出人才及其创新团队、福建省科技厅重点项目(2013Y1002,2012Y1001)资助


Proteomic Analysis of Loquat Peels under High Temperature and Strong Light Stresses
Author:
Affiliation:

1.Fruit Research Institute of FAAS; 2.Fujian Breeding Engineering Technology Center for Longan,Fruit Research Institute of FAAS,School of Life Sciences, Fujian Agriculture and Forestry University,School of Life Sciences, Fujian Agriculture and Forestry University,Fruit Research Institute of FAAS,1.Fruit Research Institute of FAAS; 2.Fujian Breeding Engineering Technology Center for Longan,School of Life Sciences, Fujian Agriculture and Forestry University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [35]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为探讨枇杷[Eriobotrya japonica (Thunb.) Lindl.]果皮在高温强光胁迫下的蛋白质组分变化,采用蛋白质组学方法分析了果实日灼抗性差的枇杷种质‘WDYDB’果皮蛋白质对高温强光胁迫的应答反应。结果表明,在自然高温强光胁迫与遮光处理(对照)下,枇杷果皮蛋白质双向电泳图谱中表达量差异在2 倍以上的蛋白点共有31 个;通过MALDI-TOF-TOF/MS 质谱分析成功鉴定出26 个差异蛋白点,包括11 个下调蛋白和15 个上调蛋白。根据这些蛋白功能,可将其分为防御应答、碳水化合物和能量代谢、光合作用、其它等4 类蛋白。同时,对这些蛋白质在高温强光胁迫下的功能和作用进行了讨论。这些差异蛋白质参与了枇杷对高温强光胁迫的响应。

    Abstract:

    In order to understand the changes in protein components of loquat [Eriobotrya japonica (Thunb.) Lindl.] under high temperature and strong light stress, the responses of proteins in loquat ‘WDYDB' peels to stress were analyzed by using proteomic approaches, which fruits were sensitive to sunburn. The results showed that there were 31 protein dots with differential expression of more than two times on dimensional electrophoresis profiles, as compared between treatments of high temperature and strong light stresses and shading (Control). Among them, twenty-six differential proteins were identified by MALDI-TOF-TOF/MS analysis, including 11 down-regulated and 15 up-regulated proteins. These proteins could be divided into 4 categories according to their functions, including defense response, carbohydrate and energy metabolism, photosynthesis and other protein. The functions and roles of these proteins under high temperature and strong light stress were discussed. Therefore, it was suggested that these differential proteins could involve in responses to high temperature and strong light stresses.

    参考文献
    [1] Schrader L E, Kahn C, Elfving D C. Sunburn browning decreases at-harvest internal fruit quality of apples (Malus domestica Borkh.)[J]. Int J Fruit Sci, 2009, 9(4): 425-437.
    [2] Weerakkody P, Jobing J, Infante M M V, et al. The effect of maturity, sunburn and the application of sunscreens on the internal and external qualities of pomegranate fruit grown in Australia [J]. Sci Hort, 2010, 124(1): 57-61.
    [3] Zhang J G, Liu Y F, Sun J S, et al. Studies on artificial induction and threshold temperatures of apple fruit sunburn [J]. Acta Hort Sin, 2003, 30(4): 446-448. 张建光, 刘玉芳, 孙建设, 等. 苹果果实日灼人工诱导技术及阈值温度研究 [J]. 园艺学报, 2003, 30(4): 446-448.
    [4] Felicetti D A, Schrader L E. Changes in pigment concentrations associated with the degree of sunburn browning of ‘Fuji' apple [J]. J Amer Soc Hort Sci, 2008, 133(1): 27-34.
    [5] Felicetti D A, Schrader L E. Changes in pigment concentrations associated with sunburn browning of five apple cultivars: Ⅱ. Phenolics [J]. Plant Sci, 2009, 176(1): 84-89.
    [6] Deng C J, Xu Q Z, Jiang J M, et al. Changes in antioxidant properties induced by heat injury in loquat peel under high temperature stress[J]. J Trop Subtrop Bot, 2012, 20(5): 439-444. 邓朝军, 许奇志, 蒋际谋, 等. 高温胁迫对枇杷果皮热伤害的抗氧化特性影响 [J]. 热带亚热带植物学报, 2012, 20(5):439-444.
    [7] Andrews P K, Johnson J R. Physiology of sunburn development in apples [J]. Good Fruit Grower, 1996, 47(12): 33-36.
    [8] Wang J P. Effect of high-temperature and excessive-light stresses on antioxidant capacity in apple fruits [D]. Baoding: Agricultural University of Hebei, 2010: 1-39. 王静璞. 高温、强光胁迫对苹果果实抗氧化能力的影响 [D]. 保定: 河北农业大学, 2010: 1-39.
    [9] You X R, Wang L X, Liang W Y, et al. Floral reversion mechanism in longan (Dimocarpus longan Lour.) revealed by proteomic and anatomic analyses [J]. J Proteomics, 2012, 75(4): 1099-1118.
    [10] Lee D G, Ahsan N, Lee S H, et al. A proteomic approach in analyzing heat-responsive proteins in rice leaves [J]. Proteomics, 2007, 7(18): 3369-3383.
    [11] Huangpu X Q. Studies on physiological and biochemical responses of different flue-cured tobacco genotypes to different light intensity and thermal environments [D]. Fuzhou: Fujian Agriculture and Forestry University, 2012: 1-4. 皇甫晓琼. 不同基因型烤烟对光温环境的生理生化响应研究[D]. 福州: 福建农林大学, 2012: 1-4.
    [12] Hao Y Y, Huang W D. Changes in antioxidative system and cell ultrastructure in the fruit peels of apple during sunburn development[J]. J Plant Physiol Mol Biol, 2004, 30(1): 19-26. 郝燕燕, 黄卫东. 苹果日烧病程中果皮抗氧化系统与细胞超微结构的变化 [J]. 植物生理与分子生物学学报, 2004, 30(1): 19-26.
    [13] Deng C J, Jiang J M, Zhang X Y, et al. Research on influence factors in heat injury of loquat peel [J]. Fujian J Agri Sci, 2012, 27(10): 1081-1086. 邓朝军, 蒋际谋, 张小艳, 等. 枇杷果皮热伤害发生影响因子研究 [J]. 福建农业学报, 2012, 27(10): 1081-1086.
    [14] Deng C J, Jiang J M, Gong H W, et al. Proteome analysis of loquat peel under sunburn in two varieties [J]. Fujian J Agri Sci, 2012, 27(12): 1313-1317. 邓朝军, 蒋际谋, 龚慧文, 等. 2个枇杷品种果皮日灼伤害差异蛋白质组分析 [J]. 福建农业学报, 2012, 27(12): 1313-1317.
    [15] Liu H, Liu Y Z, Zheng S Q, et al. Comparative proteomic analysis of longan (Dimocarpus longan Lour.) seed abortion [J]. Planta, 2010, 231(4): 847-860.
    [16] Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Anal Biochem, 1976, 72(1/2): 248-254.
    [17] Liang W Y, Zhou Y W, Wang N X, et al. Ultrastructural, physiological and proteomic analysis of Nostoc flagelliforme in response to dehydration and rehydration [J]. J Proteomics, 2012,75(18): 5604-5627.
    [18] Shao C H, Wang J Y, Lin W X. Differential proteomics analysis of leaf development at rice (Oryza sativa) seedling stage [J]. Sci Agri Sin, 2008, 41(11): 3831-3837. 邵彩虹, 王经源, 林文雄. 苗期水稻叶片发育进程的差异蛋白质组学分析 [J]. 中国农业科学, 2008, 41(11): 3831-3837.
    [19] Jagadish S V K, Muthurajan R, Oane R, et al. Physiological and proteomic approaches to address heat tolerance during anthesis in rice (Oryza sativa L.) [J]. J Exp Bot, 2010, 61(1): 143-156.
    [20] Tanaka K I, Namba T, Arai Y, et al. Genetic evidence for a protective role for heat shock factor 1 and heat shock protein 70 against colitis [J]. Biol Chem, 2007, 282(32): 23240-23252.
    [21] Mycko M P, Cwiklinska H, Walczak A, et al. A heat shock protein gene (Hsp70.1) is critically involved in the generation of the immune response to myelin antigen [J]. Eur J Immunol, 2008, 38(7): 1999-2013.
    [22] Li H C, Guo X L, Wang D M, et al. Responses of HSP70 gene expression to temperature stresses in maize (Zea mays L.) [J]. J Agri Univ Heibei, 2010, 33(6): 12-15,25. 李慧聪, 郭秀林, 王冬梅, 等. 玉米热激蛋白70基因对温度胁迫的响应 [J]. 河北农业大学学报, 2010, 33(6): 12-15,25.
    [23] Chen X H. Studies on heat shock proteins (HSPs) of rice (Oryza sativa L.) in response to heat stress [D]. Fuzhou: Fujian Agriculture and Forestry University, 2011: 24-26. 陈新海. 高温胁迫下水稻热激蛋白的作用机理研究 [D]. 福州: 福建农林大学, 2011: 24-26.
    [24] Somerville C K, Meyerwitze E M. The Arabidopsis Book [M]. Rockville, USA: American Society of Plant Biologists, 2002: 1-19.
    [25] Noctor G, Gomez L, Vanacker H, et al. Interactions between biosynthesis, compartmentation, and transport in the control of glutathione homeostasis and signalling [J]. J Exp Bot, 2002, 53(372): 1283-1304.
    [26] Chen S, Vaghchhipawala Z, Li W, et al. Tomato phospholipid hydroperoxide glutathione peroxidase inhibits cell death induced by bax and oxidative stresses in yeast and plants [J]. Plant Physiol, 2004, 135(3): 1630-1641.
    [27] Yoshimura K, Miyao K, Gaber A, et al. Enhancement of stress tolerance in transgenic tobacco plants overexpressing Chlamydomonas glutathione peroxidase in chloroplasts or cytosol[J]. Plant J, 2004, 37(1): 21-33.
    [28] Gaber A, Yoshimura K, Yamamoto T, et al. Glutathione peroxidaselike protein of Synechocystis PCC 6803 confers tolerance to oxidative and environmental stresses in transgenic Arabidopsis[J]. Plant Physiol, 2006, 128(2): 251-262.
    [29] Zhang L B, Gu H, Gong D Q, et al. Research progress of cinnamyl alcohol dehydrogenase and its gene [J]. Acta Bot Boreal-Occid Sin, 2011, 31(1): 204-211. 鲁斌, 谷会, 弓德强, 等. 植物肉桂醇脱氢酶及其基因研究进展[J]. 西北植物学报, 2011, 31(1): 204-211.
    [30] Jiang X L, Huang Q X, Li H, et al. A review of advances in plant thaumatin-like proteins [J]. J Zhejiang Agri For Univ, 2012, 29(2): 279-287. 姜晓玲, 黄秋娴, 李虹, 等. 植物类甜蛋白基因家族研究进[J]. 浙江农林大学学报, 2012, 29(2): 279-287.
    [31] Wang Y Q, Zhang J J, Zhu G H, et al. Differential expression of proteins in rice leaves cultivated with different forms of nitrogen nutrients [J]. J Plant Physiol Mol Biol, 2006, 32(4): 403-410.
    [32] Han Y R. Molecular Cytobiology [M]. 2nd ed. Beijing: Science Press, 2001: 71-75. 韩贻仁. 分子细胞生物学 [M]. 第2版. 北京: 科学出版社, 2001: 71-75.
    [33] Jin S H, Hong J, Li X Q, et al. Antisense inhibition of Rubisco activase increases rubisco content and alters the proportion of rubisco activase in stroma and thylakoids in chloroplasts of rice leaves[J]. Ann Bot, 2006, 97(5): 739-744.
    [34] Sun S. Study on photosynthetic characteristics and mechanism of sunburn in green peel of apple fruit [D]. Tai'an: Shandong Agricultural University, 2009: 1-4. 孙山. 苹果绿色果皮光合生理特性及果皮灼伤机制的研究[D]. 泰安: 山东农业大学, 2009: 1-4.
    [35] Henmi T, Miyao M, Yamamoto Y. Release and reactive-oxygenmediated damage of the oxygen-evolving complex subunits of PSⅡ during photoinhibition [J]. Plant Cell Physiol, 2004, 45(2): 243-250.
    相似文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

蒋际谋,邓朝军,林永祥,龚慧文,许奇志,郑少泉,陈伟.枇杷果皮响应高温强光胁迫的蛋白质组分析[J].热带亚热带植物学报,2014,22(4):383~390

复制
分享
文章指标
  • 点击次数:1902
  • 下载次数: 2345
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2013-08-19
  • 最后修改日期:2013-11-04
  • 录用日期:2013-12-02
  • 在线发布日期: 2014-07-26
文章二维码