森林降水格局野外控制试验设施对土壤氮转化速率的影响
作者:
作者单位:

中国科学院华南植物园,中国科学院华南植物园

基金项目:

国家自然科学基金重点项目(31130011);广东省自然科学基金重点项目(S2012020011084)资助


Facility Effects on Soil Nitrogen Transformation Rates in A Field Controlled Precipitation Pattern Change Experiment
Author:
Affiliation:

South China Botanical Garden, CAS,South China Botanical Garden, CAS

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [29]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为探讨样地扰动对生态学野外控制试验的影响,在介绍一个较大型森林降水格局野外控制试验的基础上,分析了试验平台建设的设施对土壤化学性质和净氮(N)转化速率所产生的影响。结果表明,整个约0.7 hm2 样地在2012 年5-9 月间的土壤有机C(SOC)、全N(TN)、硝态N、铵态N、微生物生物量C(MBC)、净N 矿化速率和硝化速率均表现出一定的时空变异,但设施对SOC、TN、硝态N、铵态N 和净矿化速率的影响统计学检验不显著;而设施建设和样方周边挖隔离沟对净N 硝化速率在刚完成平台建设时有显著影响(P<0.05),但恢复3 个月后虽仍有差异,但统计学检验已不显著。这些提示了在分析和解释降水处理对净N 硝化速率的影响效应时,应注意设施效应和坡位差异的潜在影响。

    Abstract:

    In order to understand facility effects on field control experiments for ecological studies, based on introduction of a relatively large field controlled precipitation pattern change experiment for forest ecosystem, the facility effects on soil chemical properties and net nitrogen transformation rates were analyzed. The results showed that soil organic carbon (SOC), total nitrogen (TN), nitrate nitrogen, ammonium nitrogen, microbial biomass carbon (MBC), net N mineralization rate (NMR) and net N nitrification rate (NNR) all varied spatially in a 0.7 hm2 sampling area from May to September, 2012. The facility effects on SOC, TN, nitrate-N, ammonium-N, MBC, and NMR were not statistically significant. In contrast, the facility effects on NNR were statistically significant (P<0.05) after the installation of experimental facilities. But such facility effects on NNR became insignificant statistically after restoration for three months, although some differences still existed among treatment types. These implicate that facility effects and slope position influences need be paid attention while analyzing the precipitation change effects on NNR in experiment.

    参考文献
    [1] Reich P B, Grigal D F, Aber J D, et al. Nitrogen mineralization and productivity in 50 hardwood and conifer stands on diverse soils [J]. Ecology, 1997, 78(2): 335-347.
    [2] Davidson E A, de Carvalho C J R, Vieira I C G, et al. Nitrogen and phosphorus limitation of biomass growth in a tropical secondary forest [J]. Ecol Appl, 2004, 14(4): 150-163.
    [3] LeBauer D S, Treseder K K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed [J]. Ecology, 2008, 89(2): 371-379.
    [4] Siddique I, Engel V L, Parrotta J A, et al. Dominance of legume trees alters nutrient relations in mixed species forest restoration plantings within seven years [J]. Biogeochemistry, 2008, 88(1): 89-101.
    [5] Amazonas N T, Martinelli L A, de Cássia P M, et al. Nitrogen dynamics during ecosystem development in tropical forest restoration[J]. For Ecol Manag, 2011, 262(8): 1551-1557.
    [6] Li G C, Han X G, Huang J H, et al. A review of affecting factors of soil nitrogen mineralization in forest ecosystems [J]. Acta Ecol Sin, 2001, 21(7): 1187-1195. 李贵才, 韩兴国, 黄建辉, 等. 森林生态系统土壤氮矿化影响因 素研究进展 [J]. 生态学报, 2001, 21(7): 1187-1195.
    [7] Bremer E, Kuikman P. Influence of competition for nitrogen in soil on net mineralization of nitrogen [J]. Plant Soil, 1997, 190(1): 119-126.
    [8] Puri G, Ashman M R. Relationship between soil microbial biomass and gross N mineralisation [J]. Soil Biol Biochem, 1998, 30(2): 251-256.
    [9] Unkovich M, Jamieson N, Monaghan R, et al. Nitrogen mineralisation and plant nitrogen acquisition in a nitrogen-limited calcareous grassland [J]. Environ Exp Bot, 1998, 40(3): 209-219.
    [10] Evans C A, Miller E K, Friedland A J. Nitrogen mineralization associated with birch and fir under different soil moisture regimes [J]. Can J For Res, 1998, 28(12): 1890-1898.
    [11] Trenberth K E, Jones P D, Ambenje P, et al. Observations: surface and atmospheric climate change [C]//Solomon S, Qin D, Manning M, et al. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2007: 254-265.
    [12] Shen W J, Reynolds J F, Hui D F. Responses of dryland soil respiration and soil carbon pool size to abrupt vs. gradual and individual vs. combined changes in soil temperature, precipitation, and atmospheric [CO2]: A simulation analysis [J]. Global Change Biol, 2009, 15(9): 2274-2294.
    [13] Piao S L, Fang J Y, Ciais P, et al. The carbon balance of terrestrial ecosystems in China [J]. Nature, 2009, 458(7241): 1009-1013.
    [14] Reynolds J F, Virginia R A, Kemp P R, et al. Impact of drought on desert shrubs: Effects of seasonality and degree of resource island development [J]. Ecol Monogr, 1999, 69(1): 69-106.
    [15] Barker D H, Vanier C, Naumburg E, et al. Enhanced monsoon precipitation and nitrogen deposition affect leaf traits and photosynthesis differently in spring and summer in the desert shrub Larrea tridentata [J]. New Phytol, 2006, 169(4): 799-808.
    [16] Chen S P, Lin G H, Huang J H, et al. Dependence of carbon sequestration on the differential responses of ecosystem photosynthesis and respiration to rain pulses in a semiarid steppe [J]. Global Change Biol, 2009, 15(10): 2450-2461.
    [17] Burke J J, Hatfield J L, Klein R R, et al. Accumulation of heat shock proteins in field-grown cotton [J]. Plant Physiol, 1985, 78(2): 394-398.
    [18] English N B, Weltzin J F, Fravolini A, et al. The influence of soil texture and vegetation on soil moisture under rainout shelters in a semi-desert grassland [J]. J Arid Environ, 2005, 63(1): 324-343.
    [19] Köhler M, Schwendenmann L, Hölscher D. Throughfall reduction in a cacao agroforest: Tree water use and soil water budgeting [J]. Agri For Meteor, 2010, 150(7/8): 1079-1089.
    [20] Lavoir A V, Staudt M, Schnitzler J P, et al. Drought reduced monoterpene emissions from the evergreen Mediterranean oak Quercus ilex: Results from a throughfall displacement experiment [J]. Biogeosciences, 2009, 6(7): 1167-1180.
    [21] Gundersen P, Boxman A W, Lamersdorf N, et al. Experimental manipulation of forest ecosystems: Lessons from large roof experiments [J]. For Ecol Manag, 1998, 101(1/2/3): 339-352.
    [22] Liu G S. Soil Physical and Chemical Analysis & Description of Soil Profiles [M]. Beijing: Standards Press of China, 1996: 1-266. 刘光崧. 土壤理化分析与剖面描述 [M]. 北京: 中国标准出版 社, 1996: 1-266.
    [23] Wu J S, Lin Q M, Huang Q Y, et al. Methods and Applied of Soil Microbial Biomass [M]. Beijing: China Meteorological Press, 2006: 54-60. 吴金水, 林启美, 黄巧云, 等. 土壤微生物生物量测定方法及其 应用 [M]. 北京: 气象出版社, 2006: 54-60.
    [24] Wang F M, Li Z A, Xia H P, et al. Effects of nitrogen-fixing and non-nitrogen-fixing tree species on soil properties and nitrogen transformation during forest restoration in southern China [J]. Soil Sci Plant Nutr, 2010, 56(2): 297-306.
    [25] Li Y L, Hu C Z, Zhang Y, et al. Studies of the carbon storages of soils under the different kinds of plantations [J]. J Fujian For Sci Techn, 2004, 31(4): 4-7. 李跃林, 胡成志, 张云, 等. 几种人工林土壤碳储量研究 [J]. 福 建林业科技, 2004, 31(4): 4-7.
    [26] Shen W J, Ren H L, Jenerette G D, et al. Atmospheric deposition and canopy exchange of anions and cations in two plantation forests under acid rain influence [J]. Atmos Environ, 2013, 64: 242-250.
    [27] Bredemeier M, Blanck K, Lamersdorf N, et al. Response of soil water chemistry to experimenal ‘clean rain’ in the NITREX roof experiment at Solling, Germany [J]. For Ecol Manag, 1995, 71(1/2): 31-44.
    [28] Gundersen P, Andersen B R, Beier C, et al. Experimental manipulations of water and nutrient input to a Norway spruce plantation at Klosterhede, Denmark [J]. Plant Soil, 1995, 168-169(1): 601-611.
    [29] Huang C Y. Edaphology [M]. Beijing: Chinese Agricultural Press, 2000: 192-198. 黄昌勇. 土壤学 [M]. 北京: 中国农业出版社, 2000: 192-198.
    相似文献
    引证文献
引用本文

马英,申卫军.森林降水格局野外控制试验设施对土壤氮转化速率的影响[J].热带亚热带植物学报,2013,21(6):505~513

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2013-03-11
  • 最后修改日期:2013-04-08
  • 录用日期:2013-04-27
  • 在线发布日期: 2013-11-17
文章二维码