花色苷的酶降解
作者:
基金项目:

国家自然科学基金项目(31060045)资助


Enzymatic Degradation of Anthocyanins
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [81]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    综述了降解花色苷的酶类及其降解机理的研究进展。降解花色苷的酶有花色苷酶、多酚氧化酶、过氧化物酶和果胶酶。花色苷酶和果胶酶均能水解花色苷糖苷键产生花色素和糖,花色素很不稳定,因吡喃烊环极易开环可自发转换成无色衍生物。花色苷不能直接作为PPO或POD的底物;PPO和POD氧化、降解花色苷须依赖具邻二酚结构的其他酚类的存在,经连续型的偶联氧化机制实现,PPO和POD分别在氧和H2O2存在时将其他酚类氧化为邻位醌类,邻位醌将花色苷氧化为花色苷邻位醌、自身被还原为酚,邻位醌与花色苷醌间或花色苷醌相互间发生非酶促自发聚合、形成黑色素。花色苷的体内降解可能是若干种酶的同时催化下完成的,这为花色苷体内降解机理的研究和人工调控酶活性以稳定或降解花色苷提供参考。

    Abstract:

    The research advances in the enzymes degrading anthocyanins and their degradation mechanisms were summarized. The enzymes degrading anthocyanins include anthocyanase, polyphenol oxidase (PPO), peroxidase (POD) and pectinases. Anthocyanase and pectinase both hydrolyze the glucosidic bond of anthocyanins to produce anthocyanidins and saccharides, anthocyanidins are highly unstable and spontaneously change into colorless derivatives duo to the easy openning of their pyrylium rings. Anthocyanins can not directly act as PPO or POD substrates. The oxidation and degradation of anthocyanins catalyzed by PPO and POD must rely on the presence of other phenolics holding o-diphenol structure, and are realized by a coupled oxidation mechanism of consecutive-type. In the presence of O2 and H2O2, respectively, PPO and POD oxidize other phenolics to o-quinones which oxidize anthocyanins to anthocyanin o-quinones and are reduced back to the native phenolics. Non-enzymatic self-associations happen between the o-quinones and the anthocyanin o-quinones or among the anthocyanin o-quinones, forming melanins. Therefore, the anthocyanins degradation in vivo may be realized by the simultaneous catalyzing of several enzymes, which could provide a reference for the exploration of the in vivo degradation mechanisms of anthocyanins and the artificial regulations of the enzyme activities to stabilize or degrade the anthocyanins.

    参考文献
    [1] Mann J. Secondary Metabolism [M]. 2nd ed. Oxford: Clarendon Press, 1987: 275-285.
    [2] Mazza G, Miniati E. Anthocyanins in Fruits, Vegetables and Grains [M]. London: CRC Press, 1993: 210-211.
    [3] Xu Y J(徐渊金), Du Q Z(杜琪珍). Review on anthocyanins bioactivities [J]. Food Mach(食品与机械), 2006, 22(6): 154-157, 174.(in Chinese)
    [4] Patras A, Brunton N P, O'Donnell C, et al. Effect of thermal processing on anthocyanin stability in foods: Mechanisms and kinetics of degradation [J]. Trends Food Sci Techn, 2010, 21(1): 3-11.
    [5] Harborne J. Plant polyphenols: XI. Structure of acylated anthocyanins [J]. Phytochemistry, 1964, 3(2): 151-160.
    [6] Jurd L. Some advances in the chemistry of anthocyanin type plant pigments [C]// Chichester C O. Advances in Food Research: Supplement 3. The Chemistry of Plant Pigments. New York: Academic Press, 1972: 123-142.
    [7] Rodriguez-Saona L, Guisti M, Wrolstad R. Color and pigment stability of red radish and red fleshed potato anthocyanins in juice model systems [J]. J Food Sci, 1999, 64(3): 451-456.
    [8] Ye X L(叶小利), Li X G(李学刚), Li K P(李坤陪). Study on influence of Ph values on the stability of anthocyanin in purple-sweet potato [J]. Sci Techn Food Ind(食品工业科技), 2002, 23(11): 38-39.(in Chinese)
    [9] Yao H W(姚伙旺), Zeng Q P(曾秋平), Lao Y M(劳永民), et al. Effects of food additives on the stability of Litchi anthocyanin [J]. Food Sci(食品科学), 2006, 27(5): 152-156.(in Chinese)
    [10] Oren-Shamir M. Does anthocyanin degradation play a significant role in determining pigment concentration in plants? [J] Plant Sci, 2009, 177(4): 310-316.
    [11] Sun J X(孙建霞), Zhang Y(张燕), Hu X S(胡小松), et al. Structural stability and degradation mechanisms of anthocyanins [J]. Sci Agri Sin(中国农业科学), 2009, 42(3): 996-1008.(in Chinese)
    [12] Kader F, Irmouli M, Nicolas J, et al. Proposed mechanism for the degradation of pelargonidin 3-glucoside by caffeic acid o-quinone[J]. Food Chem, 2001, 75(2): 139-144.
    [13] Zhang Z Q(张昭其), Pang X Q(庞学群). Current trends: Anthocyanase of fungi [J]. Bull Microbiol(微生物通报), 2001, 28(6): 86-89.(in Chinese)
    [14] Blom H. Partial characterization of a thermostable anthocyanin-β-glycosidase from Aspergillus niger [J]. Food Chem, 1983, 12(3): 197-204.
    [15] Unno T, Ide K, Yazaki T, et al. High recovery purification and some properties of β-glucosidase from Aspergillus niger [J]. Biosci Biotechn Biochem, 1993, 57(12): 2172-2173.
    [16] Rwabahizi S, Wrolstad R E. Effects of mold contamination and ultrafiltration on the color stability of strawberry juice and concentrate [J]. J Food Sci, 1988, 53(3): 857-86l, 872.
    [17] Zhang Z Q, Pang X Q, Ji Z L, et al. Role of anthocyanin degradation in Litchi pericarp browning [J]. Food Chem, 2001, 75(2): 217-221.
    [18] Zhang Z Q, Pang X Q, Yang C, et al. Purification and structural analysis of anthocyanins from Litchi pericarp [J]. Food Chem, 2004, 84(4): 601-604.
    [19] Sánchez-Torres P, González-Candelas L, Ramón D. Heterologous expression of a Candida molischiana anthocyanin-β-glucosidase in a wine yeast strain [J]. J Agri Food Chem, 1998, 46(1): 354-360.
    [20] Huang H T. Decolorization of anthocyanins by fungal enzymes [J]. J Agri Food Chem, 1955, 3(2): 141-146.
    [21] Huang H T. The kinetics of decolorization of anthocyanins by fungal "anthocyanase" [J]. J Amer Chem Soc, 1956, 78(11): 2390-2393.
    [22] Wightman J D, Wrolstad R E. β-glucosidase activity in juice-processing enzymes based on anthocyanin analysis [J]. J Food Sci, 1996, 61(3): 544-548.
    [23] Feng F Q(冯风琴), Ye L Y(叶立扬). Food Chemistry [M]. Beijing: Chemical Industry Press, 2005: 119-119.(in Chinese)
    [24] Wightman J D, Wrolstrad R E. Anthocyanin analysis as a measure of glycosidase activity in enzymes for juice processing [J]. J Food Sci, 1995, 60(4): 862-867.
    [25] Piffaut B, Kader F, Girardin M, et al. Comparative degradation pathways of malvidin 3,5-diglucoside after enzymatic and thermal treatment [J]. Food Chem, 1994, 50(2): 115-120.
    [26] Markakis P, Livingstone G E, Fillers G R. Quantitative aspects of strawberry pigment degradation [J]. Food Res, 1957, 22(2): 117-130.
    [27] Pifferi P G, Cultrera R. Enzymic degradation of anthocyanins: Role of sweet cherry polyphenol oxidase [J]. J Food Sci, 1974, 39(4): 786-791.
    [28] Pang XQ(庞学群), Huang X M(黄雪梅), Yang X T(杨晓棠), et al. Role of polyphenol oxidase in anthocyanin degradation of lychee pericarp [J]. Sci Agri Sin(中国农业科学), 2008, 41(2): 540-545.(in Chinese)
    [29] Zhang Z Q(张昭其), Pang X Q(庞学群), Duan X W(段学武), et al. The anthocyanin degradation and anthocyanase activity during the pericarp browning of lychee fruit [J]. Sci Agri Sin(中国农业科学), 2003, 36(8): 945-949.(in Chinese)
    [30] Kan J Q(阚健全). Food Chemistry [M]. Beijing: China Agricultural University Press, 2008: 254-254.(in Chinese)
    [31] Nagai T, Suzuki N. Partial purification of polyphenol oxidase from Chinese cabbage Brassica rapa L. [J]. J Agri Food Chem, 2001, 49(8): 3922-3926.
    [32] Jang J, Song K B. Purification of polyphenoloxidase from the purple-fleshed potato (Solanum tuberosum Jasim) and its secondary structure [J]. J Food Sci, 2004, 69(8): C648-C651.
    [33] Jiang Y M, Fu J R, Zauberman G, et al. Purification of polyphenol oxidase and the browning control of Litchi fruit by glutathione and citric acid [J]. J Sci Food Agri, 1999, 79(7): 950-954.
    [34] Skrede G, Wrolstad R E, Durst R W. Changes in anthocyanins and polyphenolics during juice processing of highbush blueberries (Vaccinium corymbosum L.) [J]. J Food Sci, 2000, 65(2): 357-364.
    [35] Markakis P. Stability of anthocyanins in foods [C]// Markakis P. Anthocyanins as Food Colors. New York: Academic Press, 1982: 163-180.
    [36] Kader F, Haluk J P, Nicolas J P, et al. Degradation of cyanidin-3-glucoside by blueberry polyphenol oxidase: Kinetics study and mechanisms [J]. J Agri Food Chem, 1998, 46(8): 3060-3065.
    [37] Peng C Y, Markakis P. Effect of phenolase on anthocyanins [J]. Nature, 1963, 199(4893): 597-598.
    [38] Kader F, Nicolas J P, Metche M. Degradation of pelargonidin 3-glucoside in the presence of chlorogenic acid and blueberry polyphenol oxidase [J]. J Sci Food Agri, 1999, 79(4): 517-522.
    [39] Kader F, Irmouli M, Zitouni N, et al. Degradation of cyanidin 3-glucoside by caffeic acid o-quinone: Determination of the stoichiometry and characterization of the degradation products [J]. J Sci Food Agri, 1999, 47(11): 4625-4630.
    [40] Jiang Y M. Role of anthocyanins, polyphenol oxidase and phenols in lychee pericarp browning [J]. J Sci Food Agri, 2000, 80(3): 305-310.
    [41] Ruenroengklin N, Sun J, Shi J, et al. Role of endogenous and exogenous phenolics in Litchi anthocyanin degradation caused by polyphenol oxidase [J]. Food Chem, 2009, 115(4): 1253-1256.
    [42] Sarni P, Fulcrand H, Souillol V, et al. Mechanisms of anthocyanin degradation in grape must-like model solution [J]. J Sci Food Agri, 1995, 69(3): 385-391.
    [43] Wesche-Ebeling P, Montgomery M W. Strawberry polyphenol-oxidase: Its role in anthocyanin degradation [J]. J Food Sci, 1990, 55(3): 731-734, 745.
    [44] Richardson T, Finley J W. Chemical changes in natural food pigments [C]// Richardson T, Finley J W. Chemical Changes in Food during Processing. Westport, Conn.: AVI Publishing Company, INC, 1985: 425-433.
    [45] Raynal J, Moutounet M. Intervention of phenolic compounds in plum technology: 2. Mechanisms of anthocyanin degradation [J]. J Agri Food Chem, 1989, 37(4): 1051-1053.
    [46] Sakamura S, Shibusa S, Obata Y. Separation of a polyphenol-oxidase for anthocyanin degradation in eggplant [J]. J Food Sci, 1966, 31(3): 317-319.
    [47] Williams D C, Lim M H, Chen A O, et al. Blanching of vegetables for freezing which indicator enzyme to choose [J]. Food Techn, 1986, 40(6): 130-140.
    [48] Cheynier V, Souquet J M, Kontek A, et al. Anthocyanin degradation in oxidising grape musts [J]. J Sci Food Agri, 1994, 66(3): 283-288.
    [49] Kader F, Rovel B, Girardin M, et al. Mechanism of browning in fresh highbush blueberry fruit (Vacinium corymbosum L.): Role of blueberry polyphenol oxidase, chlorogenic acid and anthocyanins [J]. J Sci Food Agri, 1997, 74(1): 31-34
    [50] Sarni-Manchado P, Cheynier V, Moutounet M. Reactions of polyphenoloxidase generated caftaric acid o-quinone with malvidin 3-O-glucoside [J]. Phytochemistry, 1997, 45(7): 1365-1369.
    [51] Yokotsuka K, Singleton V L. Disappearance of anthocyanins as grape juice is prepared and oxidized with PPO and PPO substrates [J]. Amer J Enol Vitic, 1997, 48(1): 13-25.
    [52] Jiang Y M, Fu J R. Postharvest browning of Litchi fruit by water loss and its prevention by controlled atmosphere storage at high relative humidity [J]. Lebensm-Wiss Techn, 1999, 32(5): 278-283.
    [53] Fang Z X, Zhang M, Sun Y F, et al. Polyphenol oxidase from bayberry (Myrica rubra Sieb. et Zucc.) and its role in anthocyanin degradation [J]. Food Chem, 2007, 103(2): 268-273.
    [54] Liu L, Cao S, Xie B, et al. Degradation of cyanidin 3-rutinoside in the presence of (-)-epicatechin and Litchi pericarp polyphenol oxidase [J]. J Agri Food Chem, 2007, 55(22): 9074-9078
    [55] Jaiswal V, DerMarderosian A, Porter J R. Anthocyanins and polyphenol oxidase from dried arils of pomegranate (Punica granatum L.) [J]. Food Chem, 2010, 118(1): 11-16.
    [56] Liu L, Cao S Q, Xu Y J, et al . Oxidation of (-)-epicatechin is a precursor of Litchi pericarp enzymatic browning [J]. Food Chem, 2010, 118(3): 508-511.
    [57] Vámos-Vigyázó L. Prevention of enzymatic browning in fruits and vegetables: A review of principles and practice [C]// Lee C Y, Whitaker J R. Enzymatic Browning and Its Prevention, ACS Symposium Series 600. Washington, DC: American Chemical Society, 1995: 49-62.
    [58] Nicolas J J, Richard-Forget F, Goupy P, et a1. Enzymatic browning reactions in apple and apple products [J]. Crit Rev Food Sci Nutr, l994, 34(2): 109-157.
    [59] Pang X Q(庞学群), Duan X W(段学武), Zhang Z Q(张昭其), et al. Purification and some properties of peroxidase from pericarp of Litchi (Litchi chinensis Sonn.) [J]. J Trop Subtrop Bot(热带亚热带植物学报), 2004, 12(5): 449-454.(in Chinese)
    [60] Civello P M, Martinez G A, Chaves A, et a1. Peroxidase from strawberry fruit (Fragaria ananassa Duch): Partial purification and determination of some properties [J]. J Agri Food Chem, 1995, 43(10): 2596-2601.
    [61] Sciancalepore V, Longone V, Alviti F S. Partial purification and some properties of peroxidase from Malvasia grapes [J]. Amer J Enol Vitic, 1985, 36(2): 105-110.
    [62] Bumette F. Peroxidase and its relationship to food flavor and quality: A review [J]. J Food Sci, 1977, 42(1): 1-6.
    [63] Farrell R L, Murtagh K E, Tien M, et a1. Physical and enzymatic properties of lignin peroxidase isoenzymes from Phanerochaete chrysosporium [J]. Enzyme Microb Techn, 1989, 11(6): 322-328.
    [64] Zapata J M, Calderon A A, Ros Barcelq A. Actual browning and peroxidase level are not correlated in red and white berries from grapevine (Vitis vinifera) cultivars [J]. Fruit Variet J, 1995, 49(2): 82-84.
    [65] Zhang Z Q, Pang X Q, Duan X W, et al. Role of peroxidase in anthocyanin degradation in Litchi fruit pericarp [J]. Food Chem, 2005, 90(1/2): 47-52.
    [66] Grommeck R, Markakis P. The effect of peroxidase on anthocyanin pigments [J]. J Food Sci, 1964, 29(1): 53-57.
    [67] Kader F, Irmouli M, Nicolas P, et al. Involvement of blueberry peroxidase in the mechanisms of anthocyanin degradation in blueberry juice [J]. J Food Sci, 2002, 67(3): 910-915.
    [68] Li H S(李合生). Modern Plant Physiology [M]. 2nd ed. Beijing: Higher Education Press, 2006: 324-336.
    [69] Chalker-Scott L. Environmental significance of anthocyanins in plant stress responses [J]. Photochem Photobiol, 1999, 70(1): 1-9.
    [70] Hasegawa H, Fukasawa-Akada T, Okuno T, et al. Anthocyanin accumulation and related gene expression in Japanese parsley (Oenanthe stolonifera) induced by low temperature [J]. J Plant Physiol, 2001, 158(1): 71-78.
    [71] Vaknin H, Bar-Akiva A, Ovadia R, et al. Active anthocyanin degradation in Brunfelsia calycina (yesterday-today-tomorrow) flowers [J]. Planta, 2005, 222(1): 19-26.
    [72] Zhang H X(张红霞), Jiang X L(江晓路), Mou H J(牟海津), et al. Research progress in the pectinase of microorganisms [J]. Biotechnology(生物技术), 2005, 15(5): 92-95.(in Chinese)
    [73] Zhang H Y(张海燕), Wu T X(吴天祥). Research progress in pectinase [J]. Liquor-mak Sci Techn(酿酒科技), 2006(9): 82-85.(in Chinese)
    [74] Jayani RS, Saxena S, Gupta R. Microbial pectinolytic enzymes: A review [J]. Proc Biochem, 2005, 40(9): 2931-2944.
    [75] Jiang J, Paterson A, Piggott J R. Effects of pectolytic enzyme treatments on anthocyanins in raspberry juice [J]. Int J Food Sci Techn, 1990, 25(5): 596-600.
    [76] Versari A, Biesenbruch S, Barbanti D, et al. Effects of pectolytic enzymes on selected phenolic compounds in strawberry and raspberry juices [J]. Food Res Int, 1997, 30(10): 811-817.
    [77] Wang J Y(王镜岩), Zhu S G(朱圣庚), Xu C F(徐长法). Biochemistry Upper Volumn [M]. 3rd ed. Beijing: Higher Education Press, 2002: 47-48.(in Chinese)
    [78] Francis F J. Food colorants: Anthocyanins [J]. Crit Rev Food Sci Nutr, 1989, 28(4): 273-314.
    [79] Jiang Y M, Duan X W, Joyce D, et al. Advances in understanding of enzymatic browning in harvested Litchi fruit [J]. Food Chem, 2004, 88(3): 443-446.
    [80] Lu Y(卢钰), Dong X Y(董现义), Du J P(杜景平), et al. Research progress on anthocyanins [J]. J Shandong Agri Univ (Nat Sci)(山东农业大学学报: 自然科学版), 2004, 35(2): 315-320.(in Chinese)
    [81] Yang X(杨茜), Zhang Z H(张朝晖), Shan N(单宁). Study on characterization and application in fabric pretreatment of alkaline pectinase [J]. Zhejiang Chem Ind(浙江化工), 2009, 40(4): 16-20.(in Chinese)
引用本文

赵昶灵,李云,陈中坚,李俊,刘福翠.花色苷的酶降解[J].热带亚热带植物学报,2011,19(6):576~584

复制
分享
文章指标
  • 点击次数:3447
  • 下载次数: 2240
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2011-03-09
  • 最后修改日期:2011-06-04
  • 录用日期:2011-07-25
  • 在线发布日期: 2011-11-18
文章二维码