陶瓷工业污染区污染元素在8种树种中的积累与分布
作者:
基金项目:

佛山市科技发展专项基金(20070238);中国科学院华南植物园博士启动基金项目(200901)资助


Allocation and Accumulation of Pollutants in 8 Tree Species Grown in Ceramic Industry Polluted Area
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [39]
  • |
  • 相似文献 [16]
  • | | |
  • 文章评论
    摘要:

    选取8种抗性较强的1年生树苗栽植于广东省佛山市陶瓷工业污染区,1.5年后对它们的生长参数、干物质量和污染元素含量进行测量,评价不同树种和器官对污染元素的积累能力。结果表明,试验地的S、Cu和Pb污染风险较大,Ni、Zn、Mn和Cr污染风险较小。单株干物质量的种间差异较大,约为198~3248 g,平均为1187 g;各器官的干物质量为:主干>枝条>粗根>叶片>细根。8种树种的S、Cu、Pb的含量分别为325~12541、0.3~19.2和0.1~11.0 μg g-1,平均值分别为2459、6.8、3.5 μg g-1。S、Cu、Pb的单株积累量分别为485~7008、1.2~23.7、0.6~6.8 mg,平均值分别为2367、8.0、2.9 mg。S的单株积累量以高山榕>石笔木>小叶榕>翻白叶树>银柴>银桦>傅园榕>大头茶;Cu的为高山榕>石笔木>小叶榕>银桦>翻白叶树>傅园榕>银柴>大头茶;Pb的为小叶榕>银桦>石笔木>傅园榕>翻白叶树>高山榕>大头茶>银柴。这些结果表明高山榕、石笔木和小叶榕适宜在陶瓷工业污染区进行植被恢复。

    Abstract:

    The accumulation and allocation of pollutants in 8 one-year-old tree speeies seedlings were studied, which were planted in ceramic industry polluted area for one and half years. The results showed that S, Cu and Pb pollutants of soil were serious, while Ni, Zn, Mn and Cr pollutants were slight. Total dry mass per plant had significant differences among 8 tree species with a range from 198 g to 3248 g, and the mean of 1187 g. The contents of S and Pb changed greatly among different tree species and organs. The contents of S, Cu and Pb in 8 tree species ranged of 325-12541, 0.3-19.2, and 0.1-11.0 μg g-1, with the mean of 2459, 6.8, and 3.5 μg g-1, respectively, while their accumulation per plant ranged of 485-7008, 1.2-23.7, and 0.6-6.8 mg, with the average of 2367, 8.0, and 2.9 mg, respectively. The S accumulation per plant was in order as F. altissima>T. championi>F. microcarpa>P. heterophyllum>A. dioica>G. robusta>F. microcarpa var. fuyuensis>G. axillaris; Cu: F. altissima>T. championi>F. microcarpa>G. robusta>P. heterophyllum>F. microcarpa var. fuyuensis>A. dioica>G. axillaris; Pb: F. microcarpa>G. robusta>T. championi>F. microcarpa var. fuyuensis>P. heterophyllum>F. altissima>G. axillaris>A. dioica. It suggested that F. altissima, T. championi and F. microcarpa were suitable for phytoremediation in ceramic industry polluted area.

    参考文献
    [1] Kuang Y W(旷远文), Zhou G Y(周国逸), Wen D Z(温达志). Environmental bioindication of sulphur in tree rings of masson pine (Pinus massoniana) in the Pearl River Delta of China [J]. J Beijing For Univ(北京林业大学学报), 2008, 30(2): 1-7.(in Chinese)
    [2] Wong S C, Li X D, Zhang G, et al. Heavy metals in agricultural soils of the Pearl River Delta, South China [J]. Environ Pollut, 2002, 119(1): 33-44.
    [3] Guan D S(管东生), Chen Y J(陈玉娟), Ruan G B(阮国标). Study on heavy metal concentrations and imapact of human activity on them in urban and suburb soils of Guangzhou [J]. Acta Sci Nat Univ Sunyatseni(中山大学学报:自然科学版), 2001, 40(4): 93-96,101.(in Chinese)
    [4] Zhang Y D(张远东). Simple analysis of acid rain pollution in the Pearl River Delta Region [J]. Res Environ Sci(环境科学研究), 1999, 12(3): 31-34.(in Chinese)
    [5] Yuan Z(袁征). The way and direction of environmental protection in the Pearl River Delta [J]. Guangdong Environ Protect Sci Techn(广东环保科技), 2002, 12(2): 1-4.(in Chinese)
    [6] Wen D Z, Kuang Y W, Liu S Z, et al. Evidences and implications of vegetation damage from ceramic industrial emission on a rural site in the Pearl River Delta of China [J]. J For Res, 2006, 17(1): 7-12.
    [7] Liu L M(刘黎明), Yang L(杨琳), Li Z P(李振鹏). Landscaple ecological problems and the countermeasures in the process of rural urbanization [J]. Ecol Environ (生态环境), 2006, 15(1): 202-206.(in Chinese)
    [8] Su S Q(苏少青), Lin B S(林碧珊), Zeng X D(曾晓舵). Ecological and environmental protection problems in land consolidation and the countermeasures [J]. Ecol Environ(生态环境), 2006, 15(4): 881-884.(in Chinese)
    [9] Luo Y M(骆永明). Phytoremediation in metals polluted soil [J]. Soils(土壤), 1999(5): 261-265,80.(in Chinese)
    [10] Wang H B(王宏镔), Su W S(束文圣), Lan C Y(蓝崇钰). Ecology for heavy metal pollution: Recent advances and future prospects [J]. Acta Ecol Sin(生态学报), 2005, 25(3): 596-605.(in Chinese)
    [11] Pulford I D, Watson C. Phytoremediation of heavy metal-conta-minated land by trees: A review [J]. Environ Inter, 2003, 29(4): 529-540.
    [12] Liu W T(刘维涛), Zhang Y L(张银龙), Chen Z M(陈喆敏), et al. Cadium and zinc absorption and distribution in various tree species in a mining area [J]. Chin J Appl Ecol(应用生态学报), 2008, 19(4): 752-756.(in Chinese)
    [13] Dickinson N M. Strategies for sustainable woodland on conta-minated soils [J]. Chemosphere, 2000, 41(1/2): 259-263.
    [14] Dickinson N M, Turner A P, Lepp N W. How do trees and other long-lived plants survive in polluted environments [J] Funct Ecol, 1991, 5(1): 5-11.
    [15] Kahle H. Response of roots of trees to heavy-metals [J]. Environ Exp Bot, 1993, 33(1): 99-119.
    [16] Dickinson N M, Turner A P, Watmough S A, et al. Acclimation of trees to pollution stress: Cellular metal tolerance traits [J]. Ann Bot (London), 1992, 70(6): 569-572.
    [17] Wen D Z(温达志), Kong G H(孔国辉), Zhang D Q(张德强), et al. Ecophysiological responses of 30 gardens plant species exposed to short-term air pollution [J]. Acta Phytoecol Sin(植物生态学报), 2003, 27(3): 311-317.(in Chinese)
    [18] Zheng F X(郑飞翔), Yu C Z(余春珠), Wen D Z(温达志), et al. Growth responses and dry mass allocation pattern of five subtropical tree species seedling to air pollution stress [J]. Ecol Environ(生态环境), 2006, 15(3): 519-524.(in Chinese)
    [19] Kong G H(孔国辉), Chen H T(陈宏通), Liu S Z(刘世忠), et al. Responses of garden greening plants to air pollution in Guangdong Province and the accumulation of pollutants in leaves [J]. J Trop Subtrop Bot(热带亚热带植物学报), 2003, 11(4): 297-315.(in Chinese)
    [20] Jiangsu Institute of Botany(江苏省植物研究所), Guangdong Institute of Botany(广东省植物研究所), Beijing Botanical Garden of Chinese Academy of Sciences(中国科学院北京植物园), et al. Anti-pollutant Greening Plants [M]. Beijing: Science Press, 1978: 1-176.(in Chinese)
    [21] Sun L J(孙丽静), Chen H Y(陈红跃), Fang Z L(方卓林), et al. Water-holding characterisitic of 0-20 cm depth soil in fengshui woods of Foshan City [J]. Guangdong For Sci Tech(广东林业科技), 2007, 23(1): 47-52 (in Chinese)
    [22] HJ/T 166 -2004, The Technical Specification for Soil Environ-mental Monitoring [S]. 2004: 1-41.(in Chinese)
    [23] Sucharova J, Suchara I. Distribution of 36 element deposition rates in a historic mining and smelting area as determined through fine-scale biomonitoring techniques: Part I: Relative and absolute current atmospheric deposition levels detected by moss analyses [J]. Water Air Soil Pollut, 2004, 153(1/2/3/4): 205-228.
    [24] Sabovljevic M, Vukojevic V, Sabovjevic A, et al. Determination of heavy metal deposition in the county of Obrenovac (Serbia) using mosses as bioindicators: III. Copper (Cu), iron (Fe) and mercury (Hg) [J]. Arch Biol Sci, 2007, 59(4): 351-361.
    [25] Pandey J, Pandey U. Accumulation of heavy metals in dietary vegetables and cultivated soil horizon in organic farming system in relation to atmospheric deposition in a seasonally dry tropical region of India [J]. Environ Monit Assess, 2009, 148(1/2/3/4): 61-74.
    [26] Adamo P, Arienzo M, Imperato M, et al. Distribution and partition of heavy metals in surface and sub-surface sediments of Naples City port [J]. Chemosphere, 2005, 61(6): 800-809.
    [27] Blaser P, Zimmermann S, Luster J, et al. Critical examination of trace element enrichments and depletions in soils: As, Cr, Cu, Ni, Pb, and Zn in Swiss forest soils [J]. Sci Tot Environ, 2000, 249(1/2/3): 257-280.
    [28] Sun F F, Wen D Z, Kuang Y W, et al. Concentrations of sulphur and heavy metals in needles and rooting soils of masson pine (Pinus massoniana L.) trees growing along an urban-rural gradient in Guangzhou, China [J]. Environ Monit Assess, 2009, 154(1/2/3/4): 263-274.
    [29] Wei S H(魏树和), Zhou Q X(周启星), Wang X(王新). Characteristic of 18 species of weed hyperaccumulating heavy metals in contaminated soils [J]. J Basic Sci Eng(应用基础与工程科学学报), 2003, 11(2): 152-160.(in Chinese)
    [30] China National Environmental Monitoring Centre(中国环境监测总站). The Background Concentrations of Soil Elements in China [M]. Beijing: Chinese Environment Science Press, 1990: 316-378.(in Chinese)
    [31] Zhao C Y(赵成义), Song Y D(宋郁东), Wang Y C(王玉潮), et al. Estimation of aboveground biomass of desert plants [J]. Chin J Appl Ecol(应用生态学报), 2004, 15(1): 49-52.(in Chinese)
    [32] Zhang L(张林), Luo T X(罗天祥), Deng K M(邓坤枚), et al. Biomass and net primary productivity of secondary evergreen broad-leaved forest in Huangmian forest farm [J]. Chin J Appl Ecol(应用生态学报), 2004, 15(11): 2029-2033.(in Chinese)
    [33] Klumpp A, Bauer K, Franz-Gerstein C, et al. Variation of nutrient and metal concentrations in aquatic macrophytes along the Rio Cachoeira in Bahia (Brazil) [J]. Environ Inter, 2002, 28(3): 165-171.
    [34] Zhang D Q(张德强), Chu G W(褚国伟), Yu Q F(余清发), et al. Decontamination ability of garden plants to absorb sulfur dioxide and fluoride [J]. J Trop Subtrop Bot(热带亚热带植物学报), 2003, 11(4): 336-334.(in Chinese)
    [35] Mengel K, Kirkby E A. Principles of Plant Nutrient [M]. 4th ed. Berlin: International Potash Institute, 1987: 381-399.
    [36] Alloway B J, Ayres D C. Chemical Principles of Environmental Pollution [M]. London: Blackie Academic and Professional,1993: 1-291.
    [37] Zhu B Q, Chen Y W, Peng J H. Lead isotope geochemistry of the urban environment in the Pearl River Delta [J]. Appl Geochem, 2001, 16(4): 409-417.
    [38] Punshon T, Dickinson N M. Acclimation of Salix to metal stress [J]. New Phytol, 1997, 137(2): 303-314.
    [39] Wen D Z(温达志), Lu Y D(陆耀东), Kuang Y W(旷远文), et al. Ecophysiological responses and sensitivity of 39 woody species exposed to air pollution [J]. J Trop Subtrop Bot(热带亚热带植物学报), 2003, 11(4): 341-347.(in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

侯恩庆,谭家得,黎建力,张玲玲,陆耀东,温达志.陶瓷工业污染区污染元素在8种树种中的积累与分布[J].热带亚热带植物学报,2011,19(5):438~445

复制
分享
文章指标
  • 点击次数:3510
  • 下载次数: 1994
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2010-12-21
  • 最后修改日期:2011-03-16
  • 录用日期:2011-05-11
  • 在线发布日期: 2011-09-27
文章二维码