格氏栲林优势种竞争关系及其预测动态的研究
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Study on Competition Relationship and Predictive Dynamics of Dominant Species in Natural Forest of Castanopsis kawakamii
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    通过野外调查数据,利用Hegyi单木竞争指数模型,定量地分析格氏栲天然林种内和种间竞争强度。结果表明:格氏栲种内竞争强度随着胸径的增大而逐渐减少;种内与种间竞争强度的顺序为:马尾松-格氏栲(Pinusmassoniana-Castanopsiskawakamii)>格氏栲-格氏栲(C.kawakamii-C.kawakamii)>木荷-格氏栲(Schimasuperba-C.kawakamii)>杜英-格氏栲(Elaeocarpusdecipiens-C.kawakamii)>木姜子-格氏栲(Litseamollifolia-C.kawakamii)>老鼠矢-格氏栲(Symplocosstellaris-C.kawakamii);种内、种间竞争强度与格氏栲胸径之间存在显著的双曲线非线性回归关系,并利用模型预测了格氏栲种内种间的竞争强度。种内与种间竞争关系的数量研究,不仅拓展格氏栲天然林物种竞争规律的探索,而且为格氏栲林经营管理、保护和合理开发利用提供依据。

    Abstract:

    Castanopsis kawakamii is a rare species recorded as second grade of protected plant in China. A natural community of C. kawakamii forest with an area of 700 hm^2 at Shanmin in Fujian Province is considered to be the largest and unique C. kawakamii forest in China. According to data obtained from field investigation, the intraspecific and interspecific competitions of C. kawakamii in six communities were analyzed quantitatively by using Hegyi's competition index model for individual tree. Intraspecific competition intensity in this species reduced with the increase of diameter class of the trees. The competition intensity among each pair of species was in the order Pinus massoniana-Castanopsis kawakamii>C. kawakamii-C. kawakamii>Schima superba-C. kawakamii>Elaeocarpus decipiens-C. kawakamii>Litsea mollifolia-C. kawakamii>Symplocos stellaris-C. kawakamii. A remarkable regression model of the relationship between competition intensity and diameter class of objective tree individuals is established. The model can be applied to predict the competition intensity in forest of C. kawakamii.

    参考文献
    相似文献
    引证文献
引用本文

刘金福, 洪伟, 李俊清, 林加良.格氏栲林优势种竞争关系及其预测动态的研究[J].热带亚热带植物学报,2003,11(3):211~216

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码