南亚热带东部湿润区是我国重要的生态功能区,地带性植被为季风常绿阔叶林(以下简称为季风林),主要分布在海拔300~600 m[1–2]。季风林是热带季节雨林向亚热带常绿阔叶林过渡的一种森林类型,群落树种组成以壳斗科(Fagaceae)、山茶科(Theaceae)、樟科(Lauraceae)等常绿阔叶树种为主; 群落外貌终年常绿,季节变化不明显[3–4]。而在南亚热带的中山地带(海拔1000~1500 m)则分布为典型的山地常绿阔叶林(以下简称为山地林),其植物区系组成和群落外貌上与季风林相似。但由于该地带的气候接近于暖温带-温带气候,其群落结构和物种组成与季风林又有显著差异[3, 5–6]。长期人为干扰导致季风林受到严重破坏,生态问题突出[7–8],其生态学相关研究受到广泛重视[9–12]。相反,山地林保存相对完好,生态价值凸显,但是对其相关研究还较少。
不同海拔植物的适应策略是植物生态学研究的重要内容[13–15]。南亚热带山地植被垂直梯度显著,而温度是影响不同海拔植物分布的关键环境因子[16]。植物叶片对环境变化敏感,其形态解剖结构(如叶厚度、比叶面积)会随海拔梯度而产生适应性的改变[17–18]。与较低海拔的季风林不同,南亚热带山地林在冬季会经历若干次寒潮天气,植物在寒潮期间经历“急剧降温-短时间冰冻-急剧升温”的温度变化过程[19–20]。增加叶片硬度可能是适应短期冰冻造成的结构和生理损伤的重要途径[21–22]。在气候变化背景下,南亚热带季节性干旱程度加剧,常绿阔叶林树种如何响应和适应干旱是重要的科学问题[6, 23–25]。在干旱胁迫下,木质部栓塞的发生会影响正常的水分运输功能,严重栓塞会导致树木缺水(水力失败)死亡[26–27]。树木水力学研究水分运输系统的效率性(导水率)和安全性(抗栓塞能力),且两者表现出权衡关系,是探讨树木水分适应和生态表现的重要内容[15, 28–29]。水力安全边界表征植物在自然最低水势状况下木质部栓塞的程度,与植物的干旱死亡率显著相关,是评价植物发生干旱致死风险的重要指标[30]。前期研究表明季风林树种具有较高的水力安全边界,说明发生水力失败的风险较低[31]。较高海拔的山地林可能对环境变化更为敏感,但是目前对其树种水力学研究还未开展。
本研究基于南亚热带地区典型季风林和山地林固定监测样地,共测定57种树种的叶形态解剖结构、机械强度、季节最低水势、压力-容积曲线和脆弱性曲线等,比较不同海拔常绿阔叶林树种叶性状的差异,由于南亚热带山地降雨丰富、温度较低且会发生冬季冰冻,假设山地林树种叶组织较厚、机械强度较高、抗栓塞能力较强且水力安全边界值比季风林高,同时分析不同海拔树种叶性状网络, 比较叶性状组合的差异性,以揭示南亚热带山地不同海拔树种的生态适应策略, 为植物多样性保护和山地生态修复提供依据。
1 材料和方法 1.1 研究样地概况本研究在两个国家级自然保护区的固定监测样地进行,面积均为1 hm2 (100 m×100 m)。位于广西大明山的山地林样地(23º30′11″ N, 108º26′27″ E), 平均海拔1 200 m,年降雨量2 630 mm,年蒸发量1045 mm,年均温14.7 ℃。土壤类型为灰化黄壤,土层厚约50 cm,土壤pH值为3.6~4.9,有机质含量9%,N含量3.9 g/kg,P含量0.32 g/kg[32–33]。林冠层高度10~15 m,冠层优势树种为银木荷(Schima argentea)、水仙柯(Lithocarpus naiadarum)、甜槠(Castanopsis eyrei)等。位于广东鼎湖山的季风林样地(23º10′11″ N, 112º32′22″ E),平均海拔300 m,年降雨量1927 mm,年蒸发量1115 mm,年均温21.4 ℃。土壤类型为砖红壤,土层厚60~90 cm,土壤pH值为3.79,有机质含量5.35%,N含量0.5 g/kg,P含量0.15g/kg[34–35]。林冠层高度20~25 m,冠层优势树种为木荷(Schima superba)、锥栗(Castanea henryi)、厚壳桂(Cryptocarya chinensis)等。
受南亚热带季风气候影响,研究样地80%以上的降雨量集中在5月—9月;一年中会经历不同程度的秋旱、春旱和夏季高温干旱。季风林最冷月(1月)和最热月(7月)的平均温度分别为12.6 ℃和28.0 ℃。由于海拔较高,山地林最冷月(1月)和最热月(8月)的平均气温分别为5.8 ℃和21.6 ℃;在12月—翌年2月会经历多次寒潮天气,极端最低温度–8 ℃。
1.2 材料本研究选取山地林(28种)和季风林(29种)的典型树种作为研究对象(附录1)。主要根据样地群落学调查数据,选择重要值较高的树种,部分树种在1 hm2样地中的重要值较小[如山地林的丝栗栲(Castanopsis fargesii)],但其为该森林类型的常见种,也选择进行测定。参考群落平均胸径,每树种测定5株成熟健康个体。除叶片水势外,其他性状的测定均在雨季中后期完成。
1.3 测定方法 1.3.1 叶片形态性状于凌晨从每株个体的冠层采集2根健康带叶小枝,置于湿润的黑色密封塑料袋中,尽快带回实验室。每枝选取1片健康成熟叶片用于解剖结构测定, 将叶片沿主脉一分为二,一半用于测量叶脉密度, 另一半用于测量叶片横切。测量叶脉密度时,在叶片中上部剪取面积约为1 cm×1 cm的叶片样品,放入水浴锅中进行水浴,溶液为7% NaOH,温度约为90 ℃。待观察到明显的叶脉结构时,取出样品放入水中漂洗30 min,然后转移至5% NaClO水溶液中漂白5 min以去除残留的试剂和叶肉组织。制作临时装片,在光学显微镜(Leica DM 3000, Leica, Wetzlar, Germany)下观察叶脉并随机拍摄2个视野,用ImageJ软件测量四级以上叶脉总长度。叶脉密度(vein density, VD)定义为单位叶面积的叶脉长度之和。取另一半叶片中上部,徒手切片并制成临时装片, 在光学显微镜下观察叶片横切结构,在20倍镜下随机选取2个视野拍照,用ImageJ软件测量叶片厚度(leaf thickness, LT)、上表皮厚度(upper epidermis thickness, UET)、上角质层厚度(upper cuticle thickness, UCT)、下表皮厚度(lower epidermis thickness, LET)、下角质层厚度(lower cuticle thickness, LCT)、栅栏组织厚度(palisade tissue thickness, PT)和海绵组织厚度(spongy tissue thickness, ST)。
从每株个体采集20~40片健康成熟叶片(视叶片大小而定),表面擦拭干净后用叶面积仪(Li-3000A;Li-Cor, Lincoln,NE)测定总面积(LA)。然后将这些叶片放入信封中,置于70 ℃烘箱内烘48 h, 用万分之一天平(Toledo XS204, Mettler, Zurich, Switzerland)称量叶片干重(DW)。比叶面积(specific leaf area, SLA)为LA与DW的比值。
1.3.2 叶片机械强度叶片样品采集同上,每树种每株个体测定3片叶片。用精度为0.001 N的电动拉力试验机(ZQ-990A-9, 东莞, 中国)测定叶片的机械强度,包括以下2个指标。叶片撕裂力(force to tear, Ft, kN/m)为撕裂单位宽度的叶片所需要的力[21],取叶片中脉两侧长25 mm,宽5 mm的矩形样品[36],测定叶片撕裂力。叶片穿刺力(force to punch, Fp, kN/m)为穿透单位周长的叶片所需要的力[21],使用直径为0.5 mm的金属棒以80 mm/min的速度刺穿叶片(避过中脉),记录所需要的力(F),Fp为F与金属棒周长的比值。
1.3.3 叶片压力-容积曲线和脆弱性曲线利用自然干燥法测定压力容积曲线[37]。于雨季凌晨从5株个体上获取健康阳生带叶枝条,枝条末端置于水下并剪去5 cm,用黑色塑料袋整体包裹后迅速带回实验室。由于叶片水势接近饱和,可直接开始压力-容积曲线的测定。每树种测定5个重复。剪下叶片立即测定饱和鲜重,然后通过自然干燥, 利用水势仪(PMS, Corvallis, Oregon, USA)和万分之一天平(Toledo XS204, Mettler, Zurich, Switzerland)测定不同水势下的叶片重量。完成测量后,用扫描仪扫描所测叶片的面积,再将叶片放入70 ℃的烘箱中烘72 h后测定干重。最后通过叶片压力-容积曲线分析程序可得到压力-容积曲线参数[37–38],并计算叶片膨压丧失点前、后的标准化水容[capacitance, C, mmol/(m2·MPa)],C=ΔRWC/ΔΨleaf×(DW/LA)×(WW/ DW)/M,式中,ΔRWC/ΔΨleaf表示相对含水量(RWC)与水势(Ψ)的斜率,从压力-容积曲线获得,WW为叶片饱和重,M为水的摩尔质量(18 g/mol),DW/LA为SLA的倒数。
利用复水法(rehydration kinetics method)测定叶片的导水率[leaf hydraulic conductance, Kleaf, mmol/(m2·s·MPa)]和脆弱性曲线[37, 39]。让带叶枝条在实验室自然干燥,以获取不同的叶片水势。当达到目标水势时,将带叶枝条放在黑色塑料袋平衡至少1 h,然后测定枝条两端的叶片水势。若差值小于0.1 MPa,则视为水势平衡。测量初始叶片水势(Ψ0)后,将2片相邻叶片在蒸馏水中复水,复水时间(t)为10~120 s (初始水势越负,复水时间越长)。然后把复水后的叶片放入有湿纸巾(不与叶片直接接触)的自封袋中平衡10~60 min,最后测量复水后的水势(Ψf)。Kleaf=C×ln(Ψ0/Ψf)/t,若Ψ0大于膨压丧失点水势,则取膨压丧失点之前的C值,反之则取膨压丧失点之后的C值。通过测定一系列Ψ0下的Kleaf (直至Kleaf接近0),使用SigmaPlot 12.5 (Systat Software Inc., San Jose, CA, USA)中的Sigmoid方程拟合两者之间的相关关系,即为叶片脆弱性曲线。计算水势为零的叶片导水率,即为叶片最大导水率(maximum leaf hydraulic conductance, Kleaf_max);计算Kleaf_max降低至50%的叶片水势(P50leaf),作为叶片抗栓塞能力的指标。
1.3.4 叶片水势和水力安全边际2022年6月以来,华南地区遭受极端高温干旱天气。本研究于8月中旬分别在两个样地测定中午(13:00–14:00)叶水势。每种植物选5株健康成熟的个体,每个体测定3片健康成熟叶。在森林样地利用高枝剪获取阳生叶片后,使用便携式压力罐和PMS水势仪测定叶片水势。所有树种在本次极端高温干旱时期的水势值均低于前期研究[40–41],因而作为最低叶水势(minimum leaf water potential, Ψmin)。叶片水力安全边界值(leaf hydraulic safety margin, HSMleaf)=Ψmin–P50leaf。该值代表叶片在干旱时期发生水力失败风险的程度[30]。
1.4 数据分析利用Microsoft Excel软件进行数据初步整理及生成表格。使用Origin 2018软件对不同森林树种的叶性状进行主成分分析;利用独立样本t检验比较不同海拔常绿阔叶林树种叶片性状的差异显著性, 检验水平为P=0.05。叶性状网络(leaf trait network)是由节点(性状)和边(性状与性状之间的相关关系)构建而成的多维网络,能够识别关键性状和量化多种性状的相互依存关系,并通过网络参数量化它们的差异,有助于更好地理解植物的适应策略[42]。首先使用SPSS 21计算叶性状间的Pearson相关性,显著性水平为P < 0.05。若性状之间显著相关,用Pearson相关系数绝对值(|r|)来表示其相关性强弱;若无显著相关性,则相关关系设置为零,然后将相关系数矩阵导入Gephi-0.9.7软件绘制叶片性状网络图。
2 结果和分析 2.1 叶片性状的比较从表 1可见,除上表皮厚度、叶片最大导水率和水力安全边界外,季风林和山地林树种的其他12个叶片性状均存在显著差异。
![]() |
表 1 叶性状的比较分析 Table 1 Comparative analysis of leaf characters |
主成分分析表明(图 1),第一和第二主成分可以解释58.6%的性状变异率。第一主成分轴与叶片解剖性状(LCT、LET、PT、ST、UCT、LT)和机械强度(Fp、Ft)正相关,与比叶面积(SLA)和叶脉密度(VD)负相关;第二主成分轴与叶片水力学性状(Kleaf_max和P50leaf)正相关。不同海拔的常绿阔叶林树种沿第一主成分轴可显著分为2个类群(P < 0.001,附录2)。与季风林树种相比,山地林树种叶片各组织均较厚,机械强度较高,比叶面积和叶脉密度较小。但是,季风林与山地林的Kleaf_max和P50leaf无显著差异(P > 0.05)。
![]() |
图 1 季风林(●)和山地林(○)树种叶性状的主成分分析。性状缩写见表 1。下同 Fig. 1 Principal component analysis of leaf traits of monsoon forest (●) and mountain forest (○) species. Trait abbreviations see Table 1. The same below |
本研究中57种常绿阔叶林树种叶片的水力安全边界(HSMleaf)的种间差异显著(P < 0.05),平均为0.51 MPa,其中39种树种为正值,18种树种为负值(图 2)。丝栗栲的最大,为2.34 MPa,褐叶柄果木(Mischocarpus pentapetalus)的最低,为-0.94 MPa。季风林树种的最低水势(Ψmin, 平均-1.42 MPa)显著低于山地林树种(平均-1.08 MPa, P < 0.05, 表 1),而前者的HSMleaf (平均0.25 MPa)显著低于后者(平均0.77 MPa) (P < 0.05)。
![]() |
图 2 季风林(灰色柱)和山地林(白色柱)的叶片水力安全边界(HSMleaf)。DHS: 季风林; DMS: 山地林; 物种缩写见附录1; *: P < 0.05。 Fig. 2 Leaf hydraulic safety margin (HSMleaf) of monsoon forest (grey bars) and mountain forest (white bars). DHS: Monsoon forest; DMS: Mountain forest; Species abbreviations see Appendix 1; *: P < 0.05. |
对57种常绿阔叶林树种叶片性状网络的分析表明,叶片性状与机械抗性性状间有显著的关联性, 其中叶片厚度(LT)的连通性最高(附录3)。除P50leaf外,LT与其他指标均有显著的相关关系。水力性状与其他指标的连通性较弱,P50leaf只与Ψmin、Kleaf_max有显著正相关关系,与HSMleaf呈显著负相关关系(图 3: A, 附录3, 4)。不同海拔季风常绿阔叶林树种叶片性状网络具有差异:山地林LT和SLA的连通性最强,P50leaf和Ψmin的连通性最低,P50leaf和Kleaf_max之间不相关(图 3: B), 季风常绿阔叶林树种VD、UET、SLA和PT的连通性较低,P50leaf和Kleaf_max之间显著正相关(图 3: C)。
![]() |
图 3 叶性状相关性网络。红色和绿色连接线分别代表显著正相关和负相关关系,线越粗则相关性越强。网络节点参数特征见附录3,Pearson相关性见附录4。A: 所有树种(n=57); B: 山地林树种(n=28); C: 季风常绿阔叶林树种(n=29)。 Fig. 3 Leaf trait correlation networks. Red and green lines represent positive and negative correlations, respectively. The thicker the line, the stronger the correlation. Network node parameter and Pearson correlation see Supplement 3 and 4, respectively. A: All species (n=57); B: Mountain forest (n=28); C: Monsoon forest (n=29). |
季风林和山地林树种叶片形态解剖结构和机械强度具有显著差异,体现了不同海拔常绿阔叶林树种对不同温度环境的适应。与高纬度温带森林树种在冬季经历长期低温的情况不同,南亚热带山地树种在寒潮期间经历温度的骤降和骤升。急剧冻-融过程中的机械损伤对细胞伤害较大[43–44],因此, 山地林树种致密的叶肉组织和较强的机械强度表明它们可以通过提高结构抗性(例如细胞壁硬度)避免冻-融过程中的撕裂损伤。另外,厚且硬的叶片还有利于提高过冷却能力,即在冰点以下保持非冰冻状态[45]。由于叶片结构和机械强度指标显著相关, 且较易测定,可作为评价作物和林木抗寒性的参考指标[46–47]。
叶脉起支撑和传输水分的功能,对植物叶片水分平衡具有重要作用[48]。本研究表明山地林树种的叶脉密度显著低于季风林。同样,对祁连山3种被子植物叶片的研究也发现叶脉密度与海拔高度显著负相关[49]。一方面原因在于南亚热带山地雨雾较多,水分充足且蒸腾需求低。另一方面,为提高抗冻性,山地林树种叶片将更多的生物量用于构建厚的叶肉组织和表皮组织,导致对输导组织的投资较少。
3.2 山地林和季风林树种的水力风险均较低与其他研究发现叶片抗栓塞能力随海拔升高逐渐增强的结果相反[13–15],本研究表明不同海拔常绿阔叶林树种的P50leaf和Kleaf_max无显著差异,可能与它们总体都处于湿润的气候区有关。在2022年夏季持续极端高温天气影响下,大部分山地林树种叶片HSMleaf较大,生理受胁迫程度较小。与前期在正常旱季的研究结果相比[40],极端高温干旱时期季风林树种叶片水势显著降低,导致HSMleaf较小,但是优势树种的HSMleaf仍较高(如荷木)。基于幼苗盆栽试验证实水力失败是季风林树种干旱死亡的主要机制,且干旱致死水势低于-3 MPa[50]。与幼苗相比,森林样地较大径级个体的干旱适应能力更强,致死水势会更低。目前野外测定的极端干旱时期的最低水势值还远未达到其致死水势,也说明了常绿阔叶林树木未遭受严重干旱胁迫。另外,本研究57种树种HSMleaf种间变异大,说明水力安全策略的多样性。以上结果说明,在当前气候条件下南亚热带常绿阔叶林对干旱的抵抗力和恢复力较高[51]。基于鼎湖山季风林的演替和树种动态监测数据,结合功能性状的研究发现耐旱性状与树木死亡率和森林演替无显著的相关性[52–53],也间接说明了干旱对该森林类型的影响较小。
3.3 南亚热带不同海拔常绿阔叶林树种叶片性状的耦联关系不同南亚热带常绿阔叶林树种叶片机械抗性与SLA显著负相关,说明叶片提高机械抗性会减少碳的收益[54]。叶片水力学性状与其他性状的关联性较弱。前期研究也发现叶片水力学特征与碳经济学性状之间解耦,可能是因为这些叶片碳主要投资于非水力学相关结构(如叶片密度)的构建[55]。叶片水力性状和经济性状之间的独立性使得叶片性状组合多样化,有利于调整结构和功能以适应当地的复杂多样的生境,从而促进树种共存[56]。
不同海拔常绿阔叶林树种叶片性状相关性网络不同。季风林树种叶片P50leaf和Kleaf_max具有权衡关系,即增加叶片抗栓塞能力以降低叶片导水效率为代价[15]。但是山地林树种叶片无水力学的权衡关系,可能原因在于其树种叶片Kleaf_max显著地受叶片结构的影响,而P50leaf与叶片结构无关[57]。山地林树种叶片SLA与解剖结构显著相关,但是季风林树种叶片SLA与解剖结构解耦。以上结果说明不同海拔常绿阔叶林树种叶片随环境梯度呈现出外部形态和内部解剖结构不一致的变化趋势[47],从而形成不同的性状耦联关系[58–59]。
综上,本研究基于叶性状的研究揭示了南亚热带不同海拔常绿阔叶树种生态策略的差异性,山地林树种主要通过增加叶组织的厚度和机械抗性以适应高海拔山区低温环境,而季风林树种具有较高的比叶面积和叶脉密度以提高效率性。本研究还揭示了在极端高温干旱时期季风林和山地林的水力安全,尽管季风林树种叶水势和水力安全边界均显著低于山地林,但是大部分常绿阔叶树种水力安全边界仍为正值且种间差异大,说明该区域常绿阔叶林的干旱风险低。下一步研究可将性状与树种生态表现(生长、死亡)结合,深入分析常绿阔叶树种的生理生态适应。
附录1 57种木本植物的基本信息
Appendix 1 Basic information of 57 woody plants
附录2 叶片性状的主成分分析
Appendix 2 Principal component analysis of leaf traits
附录3 叶片性状网络的节点参数
Appendix 3 Node parameters of leaf trait network
附录4 叶片性状网络的Pearson相关性分析
Appendix 4 Pearson correlation analysis of leaf trait networks
(附录1~4详见以下链接)
[1] |
KONG G H, HUANG Z L, ZHANG Q M, et al. Type, structure, dynamics and management of the lower subtropical evergreen broad-leaved forest in the Dinghushan Biosphere Reserve of China[J]. Tropics, 1996, 6(4): 335-350. DOI:10.3759/tropics.6.335 |
[2] |
MO J M, BROWN S, PENG S L, et al. Nitrogen availability in disturbed, rehabilitated and mature forests of tropical China[J]. For Ecol Manage, 2003, 175(1-3): 573-583. DOI:10.1016/S0378-1127(02)00220-7 |
[3] |
SONG Y C. Evergreen Broad-Leaved Forests in China[M]. Beijing: Science Press, 2013. 宋永昌. 中国常绿阔叶林[M]. 北京: 科学出版社, 2013. |
[4] |
ZOU S, ZHOU G Y, ZHANG Q M, et al. Long-term (1992—2015) dynamics of community composition and structure in a monsoon evergreen broad-leaved forest in Dinghushan Biosphere Reserve[J]. Chin J Plant Ecol, 2018, 42(4): 442-452. 邹顺, 周国逸, 张倩媚, 等. 1992—2015年鼎湖山季风常绿阔叶林群落结构动态[J]. 植物生态学报, 2018, 42(4): 442-452. |
[5] |
ZHU H. Discussion on the origin of mid-montane wet evergreen broad-leaved forest in Yunnan[J]. Plant Sci J, 2016, 34(5): 715-723. 朱华. 云南中山湿性常绿阔叶林起源的探讨[J]. 植物科学学报, 2016, 34(5): 715-723. DOI:10.11913/PSJ.2095-0837.2016.50715 |
[6] |
ZHU H, ZHOU S S, YAN L C, et al. Studies on the evergreen broad-leaved forests of Yunnan, southwestern China[J]. Bot Rev, 2019, 85(2): 131-148. DOI:10.1007/s12229-019-09210-1 |
[7] |
FENG H F, LIU L Y, XUE L. Effects of nitrogen and phosphorus additions and stand density on soil chemical property in Acacia auriculiformis stands[J]. Chin J Plant Ecol, 2019, 43(11): 1010-1020. 冯慧芳, 刘落鱼, 薛立. 氮磷添加及林分密度对大叶相思林土壤化学性质的影响[J]. 植物生态学报, 2019, 43(11): 1010-1020. DOI:10.17521/cjpe.2019.0168 |
[8] |
PENG Y, LI Y J, SONG S Y, et al. Nitrogen addition slows litter decomposition accompanied by accelerated manganese release: A five-year experiment in a subtropical evergreen broadleaf forest[J]. Soil Biol Biochem, 2022, 165: 108511. DOI:10.1016/j.soilbio.2021.108511 |
[9] |
TAN Z H, ZHANG Y P, LIANG N S, et al. An observational study of the carbon-sink strength of East Asian subtropical evergreen forests[J]. Environ Res Lett, 2012, 7(4): 044017. DOI:10.1088/1748-9326/7/4/044017 |
[10] |
ZHANG Y J, YANG Q Y, LEE D W, et al. Extended leaf senescence promotes carbon gain and nutrient resorption: Importance of main-taining winter photosynthesis in subtropical forests[J]. Oecologia, 2013, 173(3): 721-730. DOI:10.1007/s00442-013-2672-1 |
[11] |
CRISTIANO P M, MADANES N, CAMPANELLO P I, et al. High NDVI and potential canopy photosynthesis of South American subtro-pical forests despite seasonal changes in leaf area index and air temperature[J]. Forests, 2014, 5(2): 287-308. DOI:10.3390/f5020287 |
[12] |
YU G R, CHEN Z, PIAO S L, et al. High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region[J]. Proc Natl Acad Sci USA, 2014, 111(13): 4910-4915. DOI:10.1073/pnas.1317065111 |
[13] |
BLACKMAN C J, BRODRIBB T J, JORDAN G J. Leaf hydraulic vulnerability influences species' bioclimatic limits in a diverse group of woody angiosperms[J]. Oecologia, 2012, 168(1): 1-10. DOI:10.1007/s00442-011-2064-3 |
[14] |
NARDINI A, PEDÀ G, LA ROCCA N. Trade-offs between leaf hydraulic capacity and drought vulnerability: Morpho-anatomical bases, carbon costs and ecological consequences[J]. New Phytol, 2012, 196(3): 788-798. DOI:10.1111/j.1469-8137.2012.04294.x |
[15] |
BLACKMAN C J, GLEASON S M, CHANG Y, et al. Leaf hydraulic vulnerability to drought is linked to site water availability across a broad range of species and climates[J]. Ann Bot, 2014, 114(3): 435-440. DOI:10.1093/aob/mcu131 |
[16] |
SONG L L, FAN J W, WU S H. Research advances on changes of leaf traits along an altitude gradient[J]. Prog Geogr, 2011, 30(11): 1431-1439. 宋璐璐, 樊江文, 吴绍洪. 植物叶片性状沿海拔梯度变化研究进展[J]. 地理科学进展, 2011, 30(11): 1431-1439. DOI:10.11820/dlkxjz.2011.11.014 |
[17] |
KAO W Y, CHANG K W. Altitudinal trends in photosynthetic rate and leaf characteristics of Miscanthus populations from central Taiwan[J]. Aust J Bot, 2001, 49(4): 509-514. DOI:10.1071/BT00028 |
[18] |
PETTER G, WAGNER K, WANEK W, et al. Functional leaf traits of vascular epiphytes: Vertical trends within the forest, intra‐ and inter-specific trait variability, and taxonomic signals[J]. Funct Ecol, 2016, 30(2): 188-198. DOI:10.1111/1365-2435.12490 |
[19] |
CAO K F, CHANG J. The ecological effects of an unusual climatic disaster: The destruction to forest ecosystems by the extremely heavy glaze and snow storms occurred in early 2008 in southern China[J]. Chin J Plant Ecol, 2010, 34(2): 123-124. 曹坤芳, 常杰. 突发气象灾害的生态效应: 2008年中国南方特大冰雪灾害对森林生态系统的破坏[J]. 植物生态学报, 2010, 34(2): 123-124. DOI:10.3773/j.issn.1005-264x.2010.02.002 |
[20] |
WU K K, PENG S L, CHEN L Y, et al. Characteristics of forest damage induced by frozen rain and snow in South China: A review[J]. Chin J Ecol, 2011, 30(3): 611-620. 吴可可, 彭少麟, 陈蕾伊, 等. 南方森林雨雪冰冻灾害的特征[J]. 生态学杂志, 2011, 30(3): 611-620. DOI:10.13292/j.1000-4890.2011.0092 |
[21] |
ONODA Y, WESTOBY M, ADLER P B, et al. Global patterns of leaf mechanical properties[J]. Ecol Lett, 2011, 14(3): 301-312. DOI:10.1111/j.1461-0248.2010.01582.x |
[22] |
ARMANI M, GOODALE U M, CHARLES-DOMINIQUE T, et al. Structural defence is coupled with the leaf economic spectrum across saplings of spiny species[J]. Oikos, 2020, 129(5): 740-752. DOI:10.1111/oik.06960 |
[23] |
ZHAO P, SUN G C, NI G Y, et al. Seasonal differences in the leaf hydraulic conductance of mature Acacia mangium in response to its leaf water use and photosynthesis[J]. Chin J Appl Ecol, 2013, 24(1): 49-56. 赵平, 孙谷畴, 倪广艳, 等. 成熟马占相思水力导度对水分利用和光合响应的季节性差异[J]. 应用生态学报, 2013, 24(1): 49-56. DOI:10.13287/j.1001-9332.2013.0126 |
[24] |
QI J H, ZHANG Y J, ZHANG Y P, et al. The influence of changes in water availability on seedling mortality of a subtropical evergreen broadleaf forest on Ailao Mountain[J]. Acta Ecol Sin, 2015, 35(8): 2521-2528. 杞金华, 章永江, 张一平, 等. 水分条件变化对哀牢山亚热带常绿阔叶林林下幼苗死亡率的影响[J]. 生态学报, 2015, 35(8): 2521-2528. DOI:10.5846/stxb201306101572 |
[25] |
WU J E, ZENG H H, ZHAO F, et al. Plant hydrological niches become narrow but stable as the complexity of interspecific competition increases[J]. Agric For Meteorol, 2022, 320: 108953. DOI:10.1016/j.agrformet.2022.108953 |
[26] |
CHOAT B, BRODRIBB T J, BRODERSEN C R, et al. Triggers of tree mortality under drought[J]. Nature, 2018, 558(7711): 531-539. DOI:10.1038/s41586-018-0240-x |
[27] |
MCDOWELL N G, BRODRIBB T J, NARDINI A. Hydraulics in the 21st century[J]. New Phytol, 2019, 224(2): 537-542. DOI:10.1111/nph.16151 |
[28] |
NARDINI A, CASOLO V, DAL BORGO A, et al. Rooting depth, water relations and non‐structural carbohydrate dynamics in three woody angiosperms differentially affected by an extreme summer drought[J]. Plant Cell Environ, 2016, 39(3): 618-627. DOI:10.1111/pce.12646 |
[29] |
ZHU S D, CHEN Y J, FU P L, et al. Different hydraulic traits of woody plants from tropical forests with contrasting soil water availability[J]. Tree Physiol, 2017, 37(11): 1469-1477. DOI:10.1093/treephys/tpx094 |
[30] |
CHOAT B, JANSEN S, BRODRIBB T J, et al. Global convergence in the vulnerability of forests to drought[J]. Nature, 2012, 491(7426): 752-755. DOI:10.1038/nature11688 |
[31] |
ZHU S D, CHEN Y J, YE Q, et al. Leaf turgor loss point is correlated with drought tolerance and leaf carbon economics traits[J]. Tree Physiol, 2018, 38(5): 658-663. DOI:10.1093/treephys/tpy013 |
[32] |
HUANG Y, WANG B, YAN L M, et al. Observations on the spatial and temporal patterns of amphibian diversity in Damingshan, Guangxi[J]. J Ecol Rural Environ, 2020, 36(8): 968-974. 黄勇, 王波, 颜琳妙, 等. 广西大明山两栖动物多样性时空格局观测[J]. 生态与农村环境学报, 2020, 36(8): 968-974. DOI:10.19741/j.issn.1673-4831.2020.0129 |
[33] |
WANG W, HUANG J, YIN Q L. Physicochemical properties of soils and their systematic classification in the vertical zone of Damingshan in Guangxi[J]. J Zhejiang Agric Sci, 2016, 57(9): 1548-1554. 王薇, 黄景, 银秋玲. 广西大明山垂直带土壤理化性质及其系统分类[J]. 浙江农业科学, 2016, 57(9): 1548-1554. DOI:10.16178/j.issn.0528-9017.20160953 |
[34] |
ZHANG R Y, LI Y P, NI Y L, et al. Intraspecific variation of leaf functional traits along the vertical layer in a subtropical evergreen broad-leaved forest of Dinghushan[J]. Biodiv Sci, 2019, 27(12): 1279-1290. 张入匀, 李艳朋, 倪云龙, 等. 鼎湖山南亚热带常绿阔叶林叶功能性状沿群落垂直层次的种内变异[J]. 生物多样性, 2019, 27(12): 1279-1290. DOI:10.17520/biods.2019267 |
[35] |
SHAO Y J, YU M X, JIANG J, et al. Status and dynamic of soil C, N and P of three forest succession gradient in Dinghushan[J]. J Trop Subtrop Bot, 2017, 25(6): 523-530. 邵宜晶, 俞梦笑, 江军, 等. 鼎湖山3种演替阶段森林土壤C、N、P现状及动态[J]. 热带亚热带植物学报, 2017, 25(6): 523-530. DOI:10.11926/jtsb.3748 |
[36] |
DÍAZ S, HODGSON J G, THOMPSON K, et al. The plant traits that drive ecosystems: Evidence from three continents[J]. J Veg Sci, 2004, 15(3): 295-304. DOI:10.1658/1100-9233(2004)015[0295:TPTTDE]2.0.CO;2 |
[37] |
YAO G Q, NIE Z F, TURNER N C, et al. Combined high leaf hydraulic safety and efficiency provides drought tolerance in Caragana species adapted to low mean annual precipitation[J]. New Phytol, 2021, 229(1): 230-244. DOI:10.1111/nph.16845 |
[38] |
BARTLETT M K, SCOFFONI C, SACK L. The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: A global meta-analysis[J]. Ecol Lett, 2012, 15(5): 393-405. DOI:10.1111/j.1461-0248.2012.01751.x |
[39] |
SACK L, SCOFFONI C. Leaf venation: Structure, function, development, evolution, ecology and applications in the past, present and future[J]. New Phytol, 2013, 198(4): 983-1000. DOI:10.1111/nph.12253 |
[40] |
ZHU S D, LI R H, HE P C, et al. Large branch and leaf hydraulic safety margins in subtropical evergreen broadleaved forest[J]. Tree Physiol, 2019, 39(8): 1405-1415. DOI:10.1093/treephys/tpz028 |
[41] |
WANG Y Q, NI M Y, ZENG W H, et al. Co-ordination between leaf biomechanical resistance and hydraulic safety across 30 sub-tropical woody species[J]. Ann Bot, 2021, 128(2): 183-191. DOI:10.1093/AOB/MCAB055 |
[42] |
LI Y, LIU C C, XU L, et al. Leaf trait networks based on global data: Representing variation and adaptation in plants[J]. Front Plant Sci, 2021, 12: 710530. DOI:10.3389/FPLS.2021.710530 |
[43] |
SMALLWOOD M, BOWLES D J. Plants in a cold climate[J]. Philos Trans Roy Soc B: Biol Sci, 2002, 357(1423): 831-847. DOI:10.1098/rstb.2002.1073 |
[44] |
CHEN K T, RENAUT J, SERGEANT K, et al. Proteomic changes associated with freeze-thaw injury and post-thaw recovery in onion (Allium cepa L.) scales[J]. Plant Cell Environ, 2013, 36(4): 892-905. DOI:10.1111/pce.12027 |
[45] |
SCHULZE E D, BECK E, MÜLLER-HOHENSTEIN K. Plant Ecology[M]. Berlin: Springer, 2005.
|
[46] |
WANG F, CHENG X M, XIAO Y L, et al. Adaptation of leaf anatomical structure and stoichiometric characteristics of wild ancient tea tree to different altitudes in Qianjiazhai[J]. Chin J Ecol, 2021, 40(7): 1958-1968. 王菲, 程小毛, 肖云龙, 等. 千家寨野生古茶树叶片解剖结构和化学组分计量特征对海拔梯度的适应[J]. 生态学杂志, 2021, 40(7): 1958-1968. DOI:10.13292/j.1000-4890.202107.034 |
[47] |
TENG Y, LI A D, HAO Z Y, et al. Anatomical structure of Passiflora caerulea L. and relationship between leaf structure and cold resistance under low temperature stress[J]. Acta Agric Zhejiang, 2018, 30(11): 1849-1858. 滕尧, 李安定, 郝自远, 等. 西番莲解剖结构特征及低温胁迫下叶片结构与抗寒性的关系[J]. 浙江农业学报, 2018, 30(11): 1849-1858. DOI:10.3969/j.issn.1004-1524.2018.11.07 |
[48] |
YAO G Q, WEI Y, BI M H, et al. Relationship between leaf vein density and the lowest water potential under drought stress in four Caragana species[J]. J Desert Res, 2018, 38(6): 1252-1258. 姚广前, 魏阳, 毕敏慧, 等. 干旱胁迫下4种锦鸡儿属植物叶脉密度与最低水势关系[J]. 中国沙漠, 2018, 38(6): 1252-1258. DOI:10.7522/j.issn.1000-694X.2017.00089 |
[49] |
WANG X F, LI R Y, LI X Z, et al. Variations in leaf characteristics of three species of angiosperms with changing of altitude in Qilian Mountains and their inland high-altitude pattern[J]. Sci China Earth Sci, 2014, 44(4): 662-670. 王学芳, 李瑞云, 李孝泽, 等. 祁连山3种被子植物叶特征随海拔变化及其内陆高海拔模式[J]. 中国科学: 地球科学, 2014, 44(4): 706-714. DOI:10.1007/s11430-013-4766-3 |
[50] |
DUAN H L, LI Y Y, XU Y, et al. Contrasting drought sensitivity and post-drought resilience among three co-occurring tree species in subtropical China[J]. Agric Forest Meteorol, 2019, 272-273: 55-68. DOI:10.1016/j.agrformet.2019.03.024 |
[51] |
HE P C, LIAN J Y, YE Q, et al. How do functional traits influence tree demographic properties in a subtropical monsoon forest?[J]. Funct Ecol, 2022, 36(12): 3200-3210. DOI:10.1111/1365-2435.14189 |
[52] |
ANDEREGG W R L, KONINGS A G, TRUGMAN A T, et al. Hydraulic diversity of forests regulates ecosystem resilience during drought[J]. Nature, 2018, 561(7724): 538-541. DOI:10.1038/s41586-018-0539-7 |
[53] |
HE P C, WRIGHT I J, ZHU S D, et al. Leaf mechanical strength and photosynthetic capacity vary independently across 57 subtropical forest species with contrasting light requirements[J]. New Phytol, 2019, 223(2): 607-618. DOI:10.1111/nph.15803 |
[54] |
MÉNDEZ-ALONZO R, EWERS F W, JACOBSEN A L, et al. Covariation between leaf hydraulics and biomechanics is driven by leaf density in Mediterranean shrubs[J]. Trees, 2019, 33(2): 507-519. DOI:10.1007/s00468-018-1796-7 |
[55] |
ZHU S D, SONG J J, LI R H, et al. Plant hydraulics and photo-synthesis of 34 woody species from different successional stages of subtropical forests[J]. Plant, Cell Environ, 2013, 36(4): 879-891. DOI:10.1111/pce.12024 |
[56] |
LI L, MCCORMACK M L, MA C G, et al. Leaf economics and hydraulic traits are decoupled in five species-rich tropical-subtropical forests[J]. Ecol Lett, 2015, 18(9): 899-906. DOI:10.1111/ele.12466 |
[57] |
SANCHEZ-MARTINEZ P, MARTÍNEZ-VILALTA, DEXTER K G, et al. Adaptation and coordinated evolution of plant hydraulic traits[J]. Ecol Lett, 2020, 23(11): 1599-1610. DOI:10.1111/ele.13584 |
[58] |
REICH P B, WRIGHT I J, CAVENDER-BARES J, et al. The evolution of plant functional variation: Traits, spectra, and strategies[J]. Int J Plant Sci, 2003, 164(S3): S143-S164. DOI:10.1086/374368 |
[59] |
SACK L, COWAN P D, JAIKUMAR N, et al. The 'hydrology' of leaves: Co-ordination of structure and function in temperate woody species[J]. Plant Cell Environ, 2003, 26(8): 1343-1356. DOI:10.1046/j.0016-8025.2003.01058.x |