文章快速检索     高级检索
  热带亚热带植物学报  2023, Vol. 31 Issue (6): 879-885  DOI: 10.11926/jtsb.4781
0

引用本文  

敖卓仪, 关晓娴, 吴杰伟. 光果金樱子三萜类化合物的分离鉴定与抗SARS-CoV-2活性评价[J]. 热带亚热带植物学报, 2023, 31(6): 879-885. DOI: 10.11926/jtsb.4781.
AO Zhuoyi, GUAN Xiaoxian, WU Jiewei. Isolation and Identification of Triterpenoids from Rosa laevigata var. leiocapus and Evaluation of Their Anti-SARS-COV-2 Activity[J]. Journal of Tropical and Subtropical Botany, 2023, 31(6): 879-885. DOI: 10.11926/jtsb.4781.

基金项目

国家自然科学基金项目(81903509)资助

通信作者

吴杰伟, E-mail: wujiewei@gzucm.edu.cn

作者简介

敖卓仪, 女, 硕士研究生,研究方向为中药新药研发。E-mail: 836967119@qq.com

文章历史

收稿日期:2023-02-26
接受日期:2023-05-23
光果金樱子三萜类化合物的分离鉴定与抗SARS-CoV-2活性评价
敖卓仪 , 关晓娴 , 吴杰伟     
广州中医药大学中药学院, 广州 510006
摘要:为了解光果金樱子(Rosa laevigata var. leiocapus)的三萜类化学成分及其抗严重急性呼吸综合征冠状病毒2活性(severe acute respiratory syndrome coronavirus 2, SARS-CoV-2),运用多种色谱分离技术从其95%乙醇提取物中分离得到15个三萜化合物。根据理化性质及波谱数据,分别鉴定为:laevigaterpene A (1)、2α, 23-二羟基齐墩果酸(2)、1β-羟基蔷薇酸(3)、3β-(p-hydroxytrans-cinnamoyloxy)olean-12-en-28-oic acid (4)、3β-反式对羟基肉桂酰氧基-2α-羟基齐墩果酸(5)、2α, 3α-二羟基-12-烯-28-齐墩果酸(6)、坡模酸(7)、桦木酸甲酯(8)、2α, 3α, 19α, 23-四羟基-12-烯-乌苏酸(9)、乙酰基-11α-甲氧基-β-乳香酸(10)、阿江榄仁尼酸(11)、2α, 3α, 19α-trihydroxy-28-norurs-12-ene (12)、蔷薇酸(13)、2α, 19α-dihydroxy-3-oxo-12-ursen-28-oic acid (14)和齐墩果酸(15)。所有化合物均为首次从光果金樱子中分离获得,其中化合物41012为首次从蔷薇属植物中分离得到。化合物815对SARS-CoV-2主蛋白酶(main protease, 简称Mpro)具有较强的抑制作用,IC50值分别为(6.74±0.33)和(5.19± 0.25) μmol/L,具有潜在的抗SARS-CoV-2活性。
关键词光果金樱子    三萜    SARS-CoV-2 Mpro    
Isolation and Identification of Triterpenoids from Rosa laevigata var. leiocapus and Evaluation of Their Anti-SARS-COV-2 Activity
AO Zhuoyi , GUAN Xiaoxian , WU Jiewei     
School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
Foundation item: This work was supported by the National Natural Science Foundation of China (Grant No. 81903509)
Abstract: To understand the triterpenoids from Rosa laevigata var. leiocapus and their SARS-CoV-2 inhibitory activities, 15 compounds were isolated from the 95% EtOH extract by using chromatographic separation techniques, such as silica gel, Sephadex LH-20 and pre-HPLC. On the basis of spectral data, their structures were identified as laevigaterpene A (1), 2α, 23-dihydroxy oleanolic acid (2), 1β-hydroxyeuscaphic acid (3), 3β-(p-hydroxytranscin-namoyloxy)olean-12-en-28-oic acid (4), 3β-trans-p-coumaroyloxy-2α-hydroxy oleanolic acid (5), 2α, 3α-dihydroxyo-lean-12-en-28-oic acid (6), pomolic acid (7), lup-3β-ol-28-carboxylate (8), 2α, 3α, 19α, 23-tetrahydroxyurs-12-en-28-oic acid (9), acetyl-11α-methoxy-β-boswellic acid (10), arjunic acid (11), 2α, 3α, 19α-trihydroxy-28-norurs-12-ene (12), euscaphic acid (13), 2α, 19α-dihydroxy-3-oxo-12-ursen-28-oic acid (14), and oleanolic acid (15). Compounds 1-15 were obtained from this species at first time. Moreover, compounds 4, 10 and 12 were isolated from Rosa at first time. Compounds 8 and 15 exhibited strong inhibitory effects on SARS-CoV-2 Mpro, with IC50 of (6.74±0.33) and (5.19±0.25) μmol/L, respectively, showing potential anti-SARS-CoV-2 activity.
Key words: Rosa laevigata var. leiocapus    Triterpene    SARS-CoV-2 Mpro    

金樱子(Rosa laevigata)是蔷薇科(Rosaceae)蔷薇属植物,广泛分布于江苏、湖南、广东、广西等地[1]。目前从蔷薇属植物中分离得到的化学成分主要有黄酮类、三萜类、鞣质等, 其中黄酮类与三萜类化合物是该属植物的主要活性成分[2]。金樱子是我国较常用的中药,《本草纲目》记载“性酸、涩、平、无毒;主治脾泻下痢、止小便利、涩精气, 久服, 令人耐寒轻身, 补血益精, 有奇效”[3]。光果金樱子(R. laevigata var. leiocapus)是金樱子变种,其性状、显色特征、多糖含量相似,但光果金樱子的叶稍薄, 果光滑无刺[45],如能作为金樱子的来源, 在采收加工时无需去刺,可以提高生产效率,节省人工成本,发展前景十分广阔。

本课题对光果金樱子的三萜类化学成分进行研究,分离出15个三萜化合物,用增强型2019-nCoV Mpro/3CLpro抑制剂筛选试剂盒对化合物抑制严重急性呼吸综合征冠状病毒2 (SARS-CoV-2)活性进行评价,为后续光果金樱子化学成分的提取分离及新的抗SARS-CoV-2药物的开发研究奠定基础。

1 材料和方法 1.1 仪器和材料

Bruker AV-400 MHz核磁共振波谱仪(瑞士Bruker公司);Waters 2695 LC偶联Waters Acquity ELSD、Waters 3100 SQDMS液质联用仪;XHRE-2000A旋转蒸发仪(上海霄汉实业发展公司);Agilent 1100制备型高效液相(美国安捷伦公司);Waters Sunfire® RP C18制备型色谱柱(5 μm, 30 mm×150 mm);多功能酶标仪(PerkinElmer公司);柱层析硅胶:200~300和300~400目(青岛海洋化工有限公司);葡聚糖凝胶LH-20 (美国Pharmacia公司);实验所用有机试剂均属分析纯级别。

植物材料于2020年11月采自广东省河源市紫金县龙窝镇,由广州中医药大学中药学院吴杰伟副研究员鉴定为蔷薇属植物光果金樱子(Rosa laevi-gata var. leiocapus)的果实。

1.2 提取和分离

光果金樱子果实15 kg,阴干,切碎,用95%乙醇常温渗滤提取3次(每次7 d),过滤后合并3次渗滤液,减压浓缩得到总提取物浸膏。后将获得的总浸膏首先用纯净水悬浮,乙酸乙酯连续萃取3次,合并萃取液,减压浓缩得到乙酸乙酯部位浸膏(130.6 g)。首先,乙酸乙酯部位浸膏使用硅胶柱层析进行处理,石油醚/乙酸乙酯为洗脱剂,进行梯度洗脱(10/1~2/1, V/V),并利用TLC检测合并得到组分Fr.1 (4.5 g)、Fr.2 (15.4 g)、Fr.3 (7.9 g)、Fr.4 (10.4 g)和Fr.5 (3.3 g)。Fr.2经Sephadex LH-20凝胶柱色谱分离(甲醇作洗脱剂),分别得到4个亚组分Fr. 2A~ Fr. 2D。组分Fr. 2B经制备型HPLC纯化,以乙腈/水为流动相,流速20 mL/min,制得化合物2 (23.2 mg)、10 (19.1 mg)和15 (7.5 mg)。Fr. 2C经制备型高效液相(乙腈-水=5:95~50:95,20 mL/min,0~120 min)纯化,分别得到化合物3 (22.4 mg)、6 (2.4 mg)和7 (6.4 mg)。Fr. 3经硅胶柱色谱分离,以二氯甲烷/甲醇[50/1~10/1, V/V]梯度洗脱,进一步经Sephadex LH-20、制备HPLC纯化,分离得到化合物11 (14.2 mg)、14 (4.5 mg)和9 (8.6 mg)。其余洗脱组分再经制备HPLC纯化,以乙腈-水为流动相,流速20 mL/min,制得化合物13 (21.3 mg) 和12 (9.5 mg)。Fr. 4通过反复硅胶柱层析和C18柱制备得到化合物1 (8.4 mg)、4 (9.6 mg)、5 (18.7 mg)和8 (10.8 mg)。

1.3 结构鉴定

本研究从光果金樱子的果实中分离得到15个三萜类化合物(图 1),包括6个齐墩果烷型三萜(化合物24561115)、7个乌苏烷型三萜(化合物37910121314)、2个羽扇豆烷型三萜(化合物18),其中化合物1为裂环羽扇豆烷型,化合物12为乌苏烷型降三萜。

图 1 三萜化合物1~15的化学结构式 Fig. 1 Structures of triterpenes 1–15

化合物1  无色针晶; 分子式C30H48O4, ESI-MS m/z: 473 [M + H]+; 1H NMR (400 MHz, CD3OD): δH 2.09 (1H, dd, J = 15.0, 10.0 Hz, H-1a), 1.35 (1H, dd, J = 15.0, 10.0 Hz, H-1b), 0.93 (1H, m, H-5), 0.81 (3H, s, H-23), 0.98 (3H, s, H-24), 1.05 (6H, over-lapped, H-25/H-26), 1.00 (3H, s, H-27), 4.57 (1H, s, H-29a), 4.68 (1H, s, H-29b), 1.67 (3H, s, H-30); 13C NMR (100 MHz, CD3OD): δC 45.9 (C-1), 94.9 (C-2), 71.6 (C-3), 39.9 (C-4), 61.7 (C-5), 21.8 (C-6), 35.6 (C-7), 42.6 (C-8), 49.0 (C-9), 42.0 (C-10), 23.6 (C-11), 27.4 (C-12), 39.9 (C-13), 43.9 (C-14), 30.7 (C-15), 33.4 (C-16), 57.6 (C-17), 50.3 (C-18), 48.7 (C-19), 151.9 (C-20), 31.7 (C-21), 38.2 (C-22), 28.3 (C-23), 21.4 (C-24), 15.0 (C-25), 17.6 (C-26), 14.9 (C-27), 180.5 (C-28), 110.2 (C-29), 19.6 (C-30)。以上数据与文献[6]报道一致, 故鉴定为laevigaterpene A。

化合物2  白色粉末; 分子式C30H48O5, ESI-MS m/z: 487 [M-H]-; 1H NMR (400 MHz, CD3OD): δH 3.88 (1H, m, H-2), 3.41 (1H, m, H-3), 5.26 (1H, t, J = 3.2 Hz, H-12), 3.40 (1H, d, J = 10.8 Hz, H-23a), 3.53 (1H, d, J = 10.8 Hz, H-23b), 0.79 (3H, s, H-24), 1.02 (3H, s, H-25), 0.82 (3H, s, H-26), 1.19 (3H, s, H-27), 0.91 (3H, s, H-29), 0.95 (3H, s, H-30); 13C NMR (100 MHz, CD3OD): δC 47.2 (C-1), 67.2 (C-2), 78.7 (C-3), 40.6 (C-4), 49.9 (C-5), 19.0 (C-6), 33.8 (C-7), 42.0 (C-8), 44.2 (C-9), 39.2 (C-10), 24.0 (C-11), 123.5 (C-12), 145.3 (C-13), 42.7 (C-14), 28.7 (C-15), 24.6 (C-16), 47.6 (C-17), 43.0 (C-18), 42.5 (C-19), 31.6 (C-20), 34.9 (C-21), 33.5 (C-22), 71.3 (C-23), 17.8 (C-24), 17.3 (C-25), 17.6 (C-26), 26.5 (C-27), 181.9 (C-28), 33.6 (C-29), 24.0 (C-30)。以上数据与文献[7]报道一致,故鉴定为2α, 23-二羟基齐墩果酸。

化合物3  白色粉末; 分子式C30H48O6, ESI-MS m/z: 527 [M + Na]+; 1H NMR (400 MHz, CD3OD): δH 3.41 (1H, d, J =3.2 Hz, H-1), 3.64 (1H, dd, J = 9.7, 3.2 Hz, H-2), 3.46 (1H, d, J = 9.7 Hz, H-3), 1.48 (1H, m, H-5), 2.17 (1H, m, H-9), 5.29 (1H, m, H-12), 2.49 (1H, s, H-18), 0.97 (3H, s, H-23), 0.88 (3H, s, H-24), 1.02 (3H, s, H-25), 0.80 (3H, s, H-26), 1.35 (3H, s, H-27), 1.20 (3H, s, H-29), 0.93 (3H, d, J = 6.7 Hz, H-30); 13C NMR(100 MHz, CD3OD): δC 81.3 (C-1), 71.8 (C-2), 80.7 (C-3), 41.8 (C-4), 49.1 (C-5), 19.4 (C-6), 34.2 (C-7), 43.0 (C-8), 48.9 (C-9), 38.9 (C-10), 26.6 (C-11), 130.6 (C-12), 138.8 (C-13), 44.3 (C-14), 29.6 (C-15), 29.1 (C-16), 49.0 (C-17), 54.9 (C-18), 73.6 (C-19), 42.5 (C-20), 27.3 (C-21), 39.0 (C-22), 28.3 (C-23), 22.4 (C-24), 13.0 (C-25), 17.7 (C-26), 24.9 (C-27), 182.4 (C-28), 27.1 (C-29), 16.6 (C-30)。以上数据与文献[8]报道一致, 故鉴定为1β-羟基蔷薇酸。

化合物4  白色粉末; 分子式C39H54O5, ESI-MS m/z: 625 [M + Na]+; 1H NMR (400 MHz, CD3OD): δH 1.44 (2H, m, H-1), 1.53 (2H, m, H-2), 4.58 (1H, t, J = 7.5 Hz, H-3), 1.14 (2H, m, H-6), 1.23 (2H, m, H-7), 5.26 (1H, brs, H-12), 2.80 (1H, dd, J = 13.8, 4.6 Hz, H-18), 0.90 (3H, s, H-23), 1.18 (3H, s, H-24), 1.02 (3H, s, H-25), 0.94 (3H, s, H-26), 0.87 (3H, s, H-29), 0.82 (3H, s, H-30), 5.85 (1H, d, J = 16.0 Hz, H-2′), 6.89 (1H, d, J = 16.0 Hz, H-3′), 7.65 (2H, d, J = 7.8 Hz, H-6′, H-8′), 6.74 (2H, d, J = 7.8 Hz, H-5′, H-9′); 13C NMR (100 MHz, CD3OD): δC 40.4 (C-1), 24.1 (C-2), 85.3 (C-3), 39.4 (C-4), 56.5 (C-5), 19.4 (C-6), 33.6 (C-7), 40.6 (C-8), 47.7 (C-9), 39.3 (C-10), 24.0 (C-11), 123.3 (C-12), 144.8 (C-13), 42.9 (C-14), 29.0 (C-15), 24.6 (C-16), 47.3 (C-17), 42.8 (C-18), 46.1 (C-19), 31.6 (C-20), 34.9 (C-21), 33.8 (C-22), 29.2 (C-23), 17.7 (C-24), 17.0 (C-25), 18.2 (C-26), 28.8 (C-27), 177.6 (C-28), 26.4 (C-29), 33.8 (C-30), 168.6 (C-1′), 116.8 (C-2′), 145.5 (C-3′), 127.8 (C-4′), 133.6 (C-5′/C-9′), 159.8 (C-7′), 115.8 (C-6′/C-8′)。以上数据与文献[9]报道一致, 故鉴定为3β-(p-hydroxy-trans-cinnamoyloxy)-olean-12-en-28-oicacid。

化合物5  白色针晶; 分子式C39H54O6, ESI-MS m/z: 617 [M-H]-; 1H NMR (400 MHz, CD3OD): δH 3.87 (1H, m, H-2), 4.68 (1H, m, H-3), 5.24 (1H, m, H-12), 0.88 (3H, s, H-23), 0.93 (6H, s, H-30/H-24), 1.04 (3H, s, H-25), 0.81 (3H, s, H-26), 1.17 (3H, s, H-27), 0.89 (3H, s, H-29), 6.37 (1H, d, J = 16.1 Hz, H-2′), 7.61 (1H, d, J = 15.2 Hz, H-3′), 7.45 (2H, d, J = 8.7 Hz, H-2″, H-6″), 6.80 (2H, d, J = 9.9 Hz, H-3″, H-5″); 13C NMR (100 MHz, CD3OD): δC 47.2 (C-1/C-17), 67.6 (C-2), 85.6 (C-3), 40.6 (C-4), 56.5 (C-5), 19.5 (C-6), 31.6 (C-7/C-29), 39.3 (C-8), 47.7 (C-9), 34.9 (C-10), 24.0 (C-11/C-30), 123.3 (C-12), 145.4 (C-13), 42.7 (C-14), 28.8 (C-15), 24.0 (C-16), 40.6 (C-18), 43.0 (C-19), 29.2 (C-20), 33.6 (C-21), 33.8 (C-22), 26.4 (C-23), 18.3 (C-24), 17.1 (C-25), 17.7 (C-26), 24.6 (C-27), 182.1 (C-28), 169.7 (C-1′), 115.8 (C-2′), 146.3 (C-3′), 127.3 (C-1″), 116.9 (C-2″/C-6″), 131.1 (C-3″/C-5″), 161.1 (C-4″)。以上数据与文献[10]报道一致, 故鉴定为3β-反式对羟基肉桂酰氧基-2α-羟基齐墩果酸。

化合物6  白色粉末; 分子式C30H48O4, ESI-MS m/z: 473 [M + H]+; 1H NMR (400 MHz, CD3OD): δH 3.56 (1H, d, J = 15.2 Hz, H-2), 2.91 (1H, d, J = 13.4 Hz, H-3), 5.26 (1H, m, H-12), 1.00 (3H, s, H-23), 0.81 (3H, s, H-24), 1.03 (3H, s, H-25), 0.84 (3H, s, H-26), 1.16 (3H, s, H-27), 0.93 (3H, s, H-29), 0.96 (3H, s, H-30); 13C NMR (100 MHz, CD3OD): δC 34.9 (C-1), 67.2 (C-2), 80.1 (C-3), 40.6 (C-4), 48.2 (C-5), 19.0 (C-6), 34.0 (C-7), 39.5 (C-8), 47.3 (C-9), 39.4 (C-10), 24.0 (C-11), 122.3 (C-12), 144.2 (C-13), 42.7 (C-14), 28.8 (C-15), 24.6 (C-16), 46.1 (C-17), 42.1 (C-18), 45.1 (C-19), 33.4 (C-20), 39.2 (C-21), 33.5 (C-22), 31.6 (C-23), 22.4 (C-24), 16.6 (C-25), 17.2 (C-26), 27.7 (C-27), 183.1 (C-28), 39.0 (C-29), 26.5 (C-30)。以上数据与文献[11]报道一致, 故鉴定为2α, 3α-二羟基-12-烯-28-齐墩果酸。

化合物7  白色粉末; 分子式C30H48O4, ESI-MS m/z: 471 [M-H]-; 1H NMR (400 MHz, CD3OD): δH 3.64 (1H, m, H-3), 5.32 (1H, m, H-12), 2.20 (1H, m, H-15), 3.16 (1H, m, H-16), 3.00 (1H, s, H-18), 1.31 (3H, s, H-23), 0.94 (3H, s, H-24), 0.81 (3H, s, H-25), 0.88 (3H, s, H-26), 1.21 (3H, s, H-27), 1.35 (3H, s, H-29), 1.00 (3H, s, H-30); 13C NMR (100 MHz, CD3OD): δC 40.5 (C-1), 26.6 (C-2), 80.1 (C-3), 39.4 (C-4), 55.1 (C-5), 19.3 (C-6), 33.1 (C-7), 42.7 (C-8), 47.9 (C-9), 39.1 (C-10), 23.7 (C-11), 130.9 (C-12), 140.1 (C-13), 43.1 (C-14), 28.1 (C-15), 26.9 (C-16), 48.1 (C-17), 54.0 (C-18), 73.7 (C-19), 41.2 (C-20), 27.1 (C-21), 39.5 (C-22), 29.2 (C-23), 16.9 (C-24), 16.6 (C-25), 17.6 (C-26), 24.9 (C-27), 182.7 (C-28), 27.3 (C-29), 15.5 (C-30)。以上数据与文献[12]报道一致, 故鉴定为坡模酸。

化合物8  白色粉末; 分子式C31H50O3, ESI-MS m/z: 469 [M-H]-; 1H NMR (400 MHz, CD3OD): δH 3.16 (1H, m, H-3), 0.95 (3H, s, H-23), 0.79 (3H, s, H-24), 0.86 (3H, s, H-25), 1.02 (3H, s, H-26), 1.00 (3H, s, H-27), 4.73 (1H, s, H-29b), 4.62 (1H, s, H-29a), 1.13 (3H, brs, H-30), 3.66 (3H, s, OCH3); 13C NMR (100 MHz, CD3OD): δC 39.8 (C-1), 28.8 (C-2), 84.4 (C-3), 40.4 (C-4), 57.9 (C-5), 19.5 (C-6), 35.4 (C-7), 41.9 (C-8), 56.8 (C-9), 37.9 (C-10), 22.2 (C-11), 26.8 (C-12), 39.5 (C-13), 43.5 (C-14), 31.6 (C-15), 33.1 (C-16), 69.7 (C-17), 50.6 (C-18), 40.5 (C-19), 151.8 (C-20), 30.8 (C-21), 38.1 (C-22), 29.1 (C-23), 16.6 (C-24), 17.2 (C-25), 17.9 (C-26), 16.0 (C-27), 178.2 (C-28), 110.3 (C-29), 21.6 (C-30), 51.9 (OCH3)。上述数据与文献[13]报道一致, 故鉴定为桦木酸甲酯。

化合物9  白色粉末; 分子式C30H48O6, ESI-MS m/z: 505 [M + H]+; 1H NMR (400 MHz, CD3OD): δH 3.88 (1H, d, J = 9.5 Hz, H-2), 5.31 (1H, m, H-12), 3.54 (1H, d, J = 11.0 Hz, H-23a), 3.39 (1H, d, J = 11.0 Hz, H-23b), 0.94 (3H, s, H-24), 0.79 (3H, s, H-25), 1.17 (3H, s, H-26), 1.32 (3H, s, H-27), 1.01 (3H, s, H-29), 0.90 (3H, d, J = 6.6 Hz, H-30); 13C NMR (100 MHz, CD3OD): δC 42.7 (C-1), 67.2 (C-2), 78.7 (C-3), 43.0 (C-4), 44.2 (C-5), 19.1 (C-6), 33.7 (C-7), 41.1 (C-8), 48.5 (C-9), 39.1 (C-10), 24.7 (C-11), 129.2 (C-12), 140.1 (C-13), 42.5 (C-14), 29.5 (C-15), 26.6 (C-16), 48.9 (C-17), 55.0 (C-18), 73.6 (C-19), 42.2 (C-20), 27.1 (C-21), 39.0 (C-22), 71.3 (C-23), 17.3 (C-24), 17.6 (C-25), 17.6 (C-26), 24.9 (C-27), 182.5 (C-28), 27.3 (C-29), 16.6 (C-30)。以上数据与文献[14]报道一致, 故鉴定为2α, 3α, 19α, 23-四羟基-12-烯-乌苏酸。

化合物10  白色粉末; 分子式C33H52O5, ESI-MS m/z: 529 [M + H]+; 1H NMR (400 MHz, CD3OD): δH 3.95 (1H, dd, J = 12.9, 5.0 Hz, H-11), 5.30 (1H, m, H-12), 1.28 (3H, s, H-23), 0.97 (3H, s, H-25), 1.03 (3H, s, H-26), 1.19 (3H, brs, H-27), 0.79 (3H, s, H-28), 0.88 (3H, s, H-29), 0.92 (3H, d, J = 9.0 Hz, H-30); 13C NMR (100 MHz, CD3OD): δC 36.0 (C-1), 25.1 (C-2), 73.6 (C-3), 45.2 (C-4), 46.7 (C-5), 19.4 (C-6), 34.0 (C-7), 43.1 (C-8), 47.8 (C-9), 38.9 (C-10), 77.8 (C-11), 124.6 (C-12), 144.7 (C-13), 43.5 (C-14), 27.1 (C-15), 27.3 (C-16), 34.2 (C-17), 56.4 (C-18), 39.1 (C-19), 39.0 (C-20), 33.6 (C-21), 40.7 (C-22), 26.6 (C-23), 182.4 (C-24), 16.6 (C-25), 17.7 (C-26), 24.9 (C-27), 28.7 (C-28), 17.4 (C-29), 22.4 (C-30), 172.7 (CO), 54.9 (CH3O), 20.8 (CH3CO)。以上数据与文献[15]报道一致,故鉴定为乙酰基-11α-甲氧基-β-乳香酸。

化合物11  白色粉末; 分子式C30H48O5, ESI-MS m/z: 489 [M + H]+; 1H NMR (400 MHz, CD3OD): δH 3.63 (1H, m, H-2), 2.92 (1H, d, J = 9.5 Hz, H-3), 5.33 (1H, m, H-12), 1.01 (3H, s, H-23), 0.94 (3H, s, H-24), 0.82 (3H, s, H-25), 0.77 (3H, s, H-26), 1.30 (3H, s, H-27), 1.00 (3H, s, H-29), 0.96 (3H, s, H-30); 13C NMR (100 MHz, CD3OD): δC 48.0 (C-1), 69.5 (C-2), 84.5 (C-3), 39.4 (C-4), 56.8 (C-5), 19.7 (C-6), 33.9 (C-7), 40.8 (C-8), 49.9 (C-9), 40.5 (C-10), 24.9 (C-11), 124.7 (C-12), 144.8 (C-13), 42.6 (C-14), 29.4 (C-15), 28.1 (C-16), 46.7 (C-17), 45.2 (C-18), 82.5 (C-19), 36.0 (C-20), 29.3 (C-21), 34.1 (C-22), 29.5 (C-23), 17.8 (C-24), 16.9 (C-25), 17.4 (C-26), 25.1 (C-27), 180.7 (C-28), 28.7 (C-29), 25.1 (C-30)。以上数据与文献[16]报道一致,故鉴定为阿江榄仁尼酸。

化合物12  白色粉末; 分子式C29H48O3, ESI-MS m/z: 445 [M + H]+; 1H NMR (400 MHz, CD3OD): δH 3.93 (1H, m, H-2), 3.31 (1H, m, H-3), 5.30 (1H, m, H-12), 0.95 (3H, s, H-23), 0.87 (3H, s, H-24), 0.99 (6H, s, H-25), 0.79 (3H, s, H-26), 1.36 (3H, s, H-27), 1.20 (3H, s, H-29), 0.92 (3H, d, J = 6.6 Hz, H-30); 13C NMR (100 MHz, CD3OD): δC 42.7 (C-1), 67.2 (C-2), 80.1 (C-3), 39.5 (C-4), 49.6 (C-5), 19.3 (C-6), 34.1 (C-7), 41.3 (C-8), 49.1 (C-9), 39.0 (C-10), 24.7 (C-11), 129.3 (C-12), 140.0 (C-13), 43.1 (C-14), 29.6 (C-15), 27.1 (C-16), 39.4 (C-17), 55.1 (C-18), 73.6 (C-19), 43.1 (C-20), 27.3 (C-21), 26.9 (C-22), 29.2 (C-23), 22.4 (C-24), 17.5 (C-25), 17.8 (C-26), 24.9 (C-27), 30.7 (C-29), 19.3 (C-30)。以上数据与文献[17]报道一致,故鉴定为2α, 3α, 19α-Trihydroxy-28-norurs-12-ene。

化合物13  白色粉末; 分子式C30H48O5, ESI-MS m/z: 489 [M + H]+; 1H NMR (400 MHz, CD3OD): δH 3.94 (1H, m, H-2), 3.35 (1H, m, H-3), 5.30 (1H, m, H-12), 2.51 (1H, s, H-18), 1.00 (6H, overlapped, H-23/H-24), 0.88 (3H, s, H-25), 0.80 (3H, s, H-26), 1.36 (1H, s, H-27), 1.20 (3H, s, H-29), 0.94 (3H, d, J = 7.0 Hz, H-30); 13C NMR (100 MHz, CD3OD): δC 42.5 (C-1), 67.2 (C-2), 80.1 (C-3), 41.3 (C-4), 49.3 (C-5), 24.9 (C-6), 34.1 (C-7), 39.4 (C-8), 48.2 (C-9), 39.5 (C-10), 27.3 (C-11), 129.4 (C-12), 140.1 (C-13), 42.7 (C-14), 29.6 (C-15), 26.6 (C-16), 49.3 (C-17), 55.1 (C-18), 73.6 (C-19), 43.1 (C-20), 19.3 (C-21), 39.0 (C-22), 29.3 (C-23), 22.5 (C-24), 17.5 (C-25), 16.9 (C-26), 27.1 (C-27), 182.3 (C-28), 16.6 (C-29), 24.7 (C-30)。以上数据与文献[18]报道一致, 故鉴定为蔷薇酸。

化合物14  白色针晶; 分子式C30H46O5, ESI-MS m/z: 487 [M + H]+; 1H NMR (400 MHz, CD3OD), 关键氢质子信号如下: δH 4.59 (1H, m, H-2), 5.31 (1H, m, H-12), 2.52 (1H, s, H-18), 1.19 (3H, s, H-23), 0.86 (3H, s, H-24), 1.12 (3H, s, H-25), 0.90 (3H, s, H-26), 1.33 (3H, s, H-27), 1.29 (3H, s, H-29), 0.94 (3H, d, J = 6.9 Hz, H-30); 13C NMR (100 MHz, CD3OD): δC 50.5 (C-1), 70.4 (C-2), 217.1 (C-3), 49.0 (C-17/C-4), 58.9 (C-5), 20.4 (C-6), 33.9 (C-7), 41.1 (C-8), 48.3 (C-9), 38.9 (C-10), 24.8 (C-11), 129.0 (C-12), 140.2 (C-13), 42.7 (C-14), 30.5 (C-15), 27.0 (C-16), 55.0 (C-18), 73.6 (C-19), 43.0 (C-20), 26.6 (C-21), 39.0 (C-22), 26.2 (C-23), 22.1 (C-24), 17.7 (C-25), 16.6 (C-26), 25.4 (C-27), 182.2 (C-28), 27.3 (C-29), 16.4 (C-30)。以上数据与文献[19]报道一致,故鉴定为2α, 19α-dihy-droxy-3-oxo-12-ursen-28-oic acid。

化合物15  白色粉末; 分子式C30H48O3, ESI-MS m/z: 457 [M + H]+; 1H NMR (400 MHz, CD3OD): δH 3.14 (1H, dd, J = 3.9, 11.0 Hz, H-3), 0.77 (1H, brs, H-5), 5.24 (1H, m, H-12), 0.94 (3H, s, H-23), 0.82 (3H, s, H-24), 0.91 (3H, s, H-25), 0.93 (3H, s, H-26), 0.91 (3H, s, H-27), 0.97 (3H, s, H-29), 1.16 (3H, s, H-30); 13C NMR (100 MHz, CD3OD): δC 39.8 (C-4/C-1), 27.9 (C-2), 79.7 (C-3), 56.8 (C-5), 19.5 (C-6), 34.0 (C-7), 40.5 (C-8), 48.4 (C-9), 38.2 (C-10), 24.5 (C-11), 123.6 (C-12), 145.2 (C-13), 42.9 (C-14), 28.7 (C-15), 24.0 (C-16), 47.6 (C-17), 42.7 (C-18), 47.3 (C-19), 31.6 (C-20), 34.9 (C-21), 33.6 (C-22), 28.8 (C-23), 16.3 (C-24), 15.9 (C-25), 17.7 (C-26), 26.4 (C-27), 182.0 (C-28), 33.8 (C-29), 24.1 (C-30)。以上数据与文献[20]报道一致, 故鉴定为齐墩果酸。

1.4 化合物抗SARS-CoV-2活性评价

通过测试化合物对SARS-CoV-2 Mpro的剂量效应,来评估从光果金樱子中分离得到的化合物抑制SARS-CoV-2活性的能力。本实验使用增强型2019-nCoV Mpro/3CLpro抑制剂筛选试剂盒(碧云天生物技术有限公司),按照说明书在黑色96孔板中进行实验。设置空白对照组、100%酶活性对照组、阳性抑制剂Ebselen (依布硒)对照组以及给药组,各组设3个复孔。将待测溶液稀释至最终浓度(100、50、25、12.5、6.25 μmol/L),按照说明书依次加入试剂和样品后37℃孵育10 min。低温下每孔快速加入4 μL底物,混匀,37 ℃避光孵育5 min。使用多功能酶标仪在激发波长为325 nm,发射波长为393 nm处进行荧光测定,记录每个样品孔及空白对照孔的荧光值,以半数抑制浓度(IC50)表示抑制率。抑制率(%)= (RFU100%酶活性对照-RFU样品)/(RFU100%酶活性对照-RFU空白对照)×100%,式中,RFU为相对荧光单位。

2 结果和讨论

本研究从光果金樱子中分离鉴定出15个三萜类化合物,分别为:laevigaterpene A (1)、2α, 23-二羟基齐墩果酸(2)、1β-羟基蔷薇酸(3)、3β-(p-hydroxy-transcinnamoyloxy)olean-12-en-28-oic acid (4)、3β-反式对羟基肉桂酰氧基-2α-羟基齐墩果酸(5)、2α, 3α-二羟基-12-烯-28-齐墩果酸(6)、坡模酸(7)、桦木酸甲酯(8)、2α, 3α, 19α, 23-四羟基-12-烯-乌苏酸(9)、乙酰基-11α-甲氧基-β-乳香酸(10)、阿江榄仁尼酸(11)、2α, 3α, 19α-trihydroxy-28-norurs-12-ene (12)、蔷薇酸(13)、2α, 19α-dihydroxy-3-oxo-12-ursen-28-oic acid (14)和齐墩果酸(15)。这15个三萜类化合物均为首次从光果金樱子中分离得到,此外化合物41012为首次从蔷薇属植物中分离得到。化合物2481215均具有SARS-CoV-2 Mpro抑制活性,IC50值分别为(51.39±0.42)、(45.02±0.28)、(6.74±0.33)、(40.21±0.10)和(5.19±0.25) μmol/L,化合物815比阳性药依布硒[(1.63±0.17) μmol/L]的抑制作用强; 化合物2412对SARS-CoV-2 Mpro表现出较弱的抑制活性,而其他化合物则显示出微弱的抑制活性(IC50 > 100 μmol/L)。初步的构效关系分析表明,当化合物C-2位上的氢未被取代,C-3位为β-OH取代时,抑制SARS-CoV-2 Mpro活性得到增强;引入羟基的数目也会影响其抑制活性,如化合物815只有1个羟基,化合物212有3个羟基,前者的SARS-CoV-2 Mpro抑制活性强于后者;另一方面, 具有SARS-CoV-2 Mpro抑制活性的5个化合物中,有3个是齐墩果烷型三萜,提示后续作用机制的研究以及抗SARS-CoV-2药物的开发可重点关注齐墩果烷型三萜化合物。

研究表明,三萜类化合物具有广泛的药理活性, 主要表现在抗肿瘤、抗炎、抗菌、抗HIV和护肝等方面[21]。据报道,化合物15具有降糖、降脂、抗癌、增强免疫力等多种药理活性[22],化合物11可以通过c-Jun氨基末端激酶(JNK)介导的内质网应激途径诱导非小细胞肺癌(NSCLC)细胞凋亡,是一种有效的NSCLC化疗药物[23]。此外,光果金樱子与金樱子植物亲缘相近, 可能具有相似的化学成分和药理作用, 如能作为金樱子的来源去开发利用,前景十分广阔。本研究进一步丰富了光果金樱子的化学成分,为其日后的研究与开发提供了科学依据,更为后续光果金樱子抗SARS-CoV-2药物的开发研究奠定基础。

参考文献
[1]
LIU X G, LI J L, GAO P Y, et al. Recent advances in research on edible Rosa laevigata Michx.[J]. Food Sci, 2013, 34(11): 392-398.
刘学贵, 李佳骆, 高品一, 等. 药食两用金樱子的研究进展[J]. 食品科学, 2013, 34(11): 392-398. DOI:10.7506/spkx1002-6630-201311081
[2]
HOU S P, HOU M N. Research progress in chemical constituents of Rosa L. Plants[J]. Chem Bioeng, 2021, 38(1): 11-16.
侯少平, 侯敏娜. 蔷薇属植物化学成分研究进展[J]. 化学与生物工程, 2021, 38(1): 11-16. DOI:10.3969/j.issn.1672-5425.2021.01.003
[3]
GU Z P, ZHANG S M, LIU D. Development and utilization of the resources of Rosa laevigata Michx.[J]. Chin Wild Plant Res, 1994(4): 30-32.
顾志平, 张曙明, 刘东. 金樱子资源的开发利用[J]. 中国野生植物资源, 1994(4): 30-32.
[4]
LIN F H, PENG Y H, CHAI S F, et al. Comparative study on the quality of Rosa laevigata var. Leiocarpus and Rosa laevigata Michx.[J]. J Guangdong Pharmaceut Univ, 2010, 26(4): 345-347.
林芳花, 彭永宏, 柴素芬, 等. 光果金樱子和金樱子质量比较研究[J]. 广东药学院学报, 2010, 26(4): 345-347. DOI:10.3969/j.issn.1006-8783.2010.04.005
[5]
WANG Y Q, CHEN B Y. New taxa of Guangdong plants[J]. J Trop Subtrop Bot, 1995, 3(1): 29-33.
王英强, 陈邦余. 广东植物新类群[J]. 热带亚热带植物学报, 1995, 3(1): 29-33.
[6]
GAO P Y, WANG M, LIU X G, et al. Triterpenes from the fruits of Rosa laevigata with acetylcholinesterase and Aβ-aggregation inhibitory activities[J]. RSC Adv, 2016, 6(3): 2431-2435. DOI:10.1039/C5RA21590K
[7]
XIAO C J, ZHOU X L, HAN B Y, et al. Chemical constituents from rhizome of Isodon adenantha[J]. Nat Prod Res Dev, 2013, 25(3): 333-337.
肖朝江, 周星利, 韩冰洋, 等. 腺花香茶菜地下根茎化学成分研究[J]. 天然产物研究与开发, 2013, 25(3): 333-337. DOI:10.3969/j.issn.1001-6880.2013.03.010
[8]
SUN J H, GAN C L, HUANG J, et al. Determination of triterpenoids and phenolic acids from Sanguisorba officinalis L. by HPLC-ELSD and its application[J]. Molecules, 2021, 26(15): 4505. DOI:10.3390/molecules26154505
[9]
WANG H S, DAI H F, WANG P, et al. Chemical constituents from litters of Casuarina equisetifolia and their biological activity[J]. Nat Prod Res Dev, 2018, 30(3): 390-395.
王海生, 戴好富, 王佩, 等. 木麻黄凋落物化学成分及其生物活性的研究[J]. 天然产物研究与开发, 2018, 30(3): 390-395. DOI:10.16333/j.1001-6880.2018.3.008
[10]
SEO C, LEE J E, LEE J A, et al. Acylated triterpenoids, flavonoids, and lignans isolated from the stems of Tetracera loureiri[J]. Chem Nat Compd, 2019, 55(2): 386-389. DOI:10.1007/s10600-019-02699-3
[11]
JIANG X H, LIU Z B, HUO H Z, et al. Triterpenoids from Salvia bowleyana[J]. Guihaia, 2021, 41(7): 1097-1103.
蒋小华, 刘章彬, 霍华珍, 等. 南丹参三萜类化学成分的研究[J]. 广西植物, 2021, 41(7): 1097-1103. DOI:10.11931/guihaia.gxzw202002042
[12]
NAM J H, JUNG H J, TAPONDJOU L A, et al. The anti-hyperlipi-demic effect and constituents of the 19α-hydroxyursane-type triterpe-noid fraction obtained from the leaves of Rubus crataegifolius[J]. Nat Prod Sci, 2007, 13(2): 152-159.
[13]
MA X M, DI D L, SHI Y P. Triterpenoids and steroids from Ixeridium gracile[J]. Chem Nat Compd, 2008, 44(3): 399-401. DOI:10.1007/s10600-008-9078-z
[14]
LI X H, SHEN D D, LI N, et al. Bioactive triterpenoids from Sym-plocos chinensis[J]. J Asian Nat Prod Res, 2003, 5(1): 49-56. DOI:10.1080/1028602031000080469
[15]
WANG F, HUA H M, WANG S M, et al. Chemical constituents from frankincense[J]. Chin Trad Herb Drugs, 2011, 42(7): 1293-1296.
王峰, 华会明, 王淑美, 等. 乳香的化学成分研究[J]. 中草药, 2011, 42(7): 1293-1296.
[16]
PONOU B K, TEPONNO R B, RICCIUTELLI M, et al. Novel 3-oxo- and 3, 24-dinor-2, 4-secooleanane-type triterpenes from Terminalia ivorensis A. Chev.[J]. Chem Biodiv, 2011, 8(7): 1301-1309. DOI:10.1002/cbdv.201000145
[17]
HAN Y F, PAN J, GAO K, et al. Sesquiterpenes, nortriterpenes and other constituents from Ligularia tongolensis[J]. Chem Pharm Bull, 2005, 53(10): 1338-1341. DOI:10.1248/cpb.53.1338
[18]
ZHENG G H, PIAO H S. Study on chemical constituents from Potentilla supina[J]. Chin Trad Herb Drugs, 2012, 43(7): 1285-1288.
郑光海, 朴惠顺. 朝天委陵菜化学成分研究[J]. 中草药, 2012, 43(7): 1285-1288.
[19]
ZHAO J, GAO W Y, DUAN H Q, et al. Study on chemical constituents of Geum japonicum[J]. Chin Trad Herb Drugs, 2008, 39(7): 978-981.
赵晶, 高文远, 段宏泉, 等. 日本路边青的化学成分研究[J]. 中草药, 2008, 39(7): 978-981. DOI:10.3321/j.issn:0253-2670.2008.07.007
[20]
KISHIKAWA A, AMEN Y, SHIMIZU K. Anti-allergic triterpenes isolated from olive milled waste[J]. Cytotechnology, 2017, 69(2): 307-315. DOI:10.1007/s10616-016-0058-z
[21]
LI H Y, LIU G M, LIU F, et al. Research of ursolic acid and similar pentacyclic triterpenoid[J]. J Hunan Univ Technol, 2009, 23(5): 18-21.
李宏杨, 刘国民, 刘飞, 等. 熊果酸及五环三萜同类物的研究进展[J]. 湖南工业大学学报, 2009, 23(5): 18-21. DOI:10.3969/j.issn.1673-9833.2009.05.005
[22]
SHEN X J, ZHAO H M, ZHAO L, et al. Research progress on oleanolic acid research[J]. Guangzhou Chem Ind, 2019, 47(24): 16-19.
沈晓静, 赵红梅, 赵蕾, 等. 齐墩果酸研究进展[J]. 广州化工, 2019, 47(24): 16-19. DOI:10.3969/j.issn.1001-9677.2019.24.011
[23]
JOO H E, LEE H J, SHIN E A, et al. c‐Jun N‐terminal kinase-dependent endoplasmic reticulum stress pathway is critically involved in arjunic acid induced apoptosis in non‐small cell lung cancer cells[J]. Phytotherapy Res, 2016, 30(4): 596-603. DOI:10.1002/ptr.5563