文章快速检索     高级检索
  热带亚热带植物学报  2023, Vol. 31 Issue (3): 401-407  DOI: 10.11926/jtsb.4622
0

引用本文  

梁慧君, 李倩然, 李百琳, 等. 米碎花的酚苷类化合物及其鼻咽癌细胞毒活性[J]. 热带亚热带植物学报, 2023, 31(3): 401-407. DOI: 10.11926/jtsb.4622.
LIANG Huijun, LI Qianran, LI Bailin, et al. Phenolic Glycosides from Eurya chinensis and Their Cytotoxic Activities Against Nasopharyngeal Carcinoma Cells[J]. Journal of Tropical and Subtropical Botany, 2023, 31(3): 401-407. DOI: 10.11926/jtsb.4622.

基金项目

国家自然科学基金项目(81903509)资助

通信作者

吴杰伟, E-mail: wujiewei@gzucm.edu.cn 袁捷, E-mail: yuanjie@gzucm.edu.cn

作者简介

梁慧君,女,硕士研究生,研究方向为中药新药研发。E-mail: jun-7387289@163.com

文章历史

收稿日期:2022-02-10
接受日期:2022-03-28
米碎花的酚苷类化合物及其鼻咽癌细胞毒活性
梁慧君 , 李倩然 , 李百琳 , 范钰汶 , 敖卓仪 , 张伟杰 , 吴杰伟 , 袁捷     
广州中医药大学中药学院, 广州 510006
摘要:为了解米碎花(Eurya chinensis)的化学成分及其生物活性,运用多种色谱技术从其乙醇提取物分离得到11个化合物, 并对化合物进行体外抗鼻咽癌细胞增殖活性评价。经波谱数据分析,分别为异落新妇苷(1)、3,5,7-三羟基色原酮-3-O-α-L-鼠李糖苷(2)、1-O-反式-桂皮酰基-β-D-葡萄糖(3)、1-O-(4-羟基苯乙基)-6-O-反式-桂皮酰基-β-D-葡萄糖(4)、eutigoside D (5)、1-O-(3,4-二羟基苯乙基)-6-O-反式-香豆酰基-β-D-葡萄糖(6)、eutigoside A (7)、1-O-(4-羟基苯乙基)-6-O-反式-咖啡酰基-β-D-葡萄糖(8)、grayanoside A (9)、1-O-(4-羟基苯乙基)-6-O-(4-羟基苯甲酰基)-β-D-葡萄糖(10)、3-O-β-D-葡萄糖基-4-羟基-苄基苯甲酸酯(11)。其中,化合物4为首次从天然来源获得,化合物2~4和8~11均为首次从该属植物中分离得到。MTT法表明,化合物10具有中等抑制5-8F细胞增殖活性。
关键词柃木属    米碎花    酚苷类    5-8F细胞    细胞毒性    
Phenolic Glycosides from Eurya chinensis and Their Cytotoxic Activities Against Nasopharyngeal Carcinoma Cells
LIANG Huijun , LI Qianran , LI Bailin , FAN Yuwen , AO Zhuoyi , ZHANG Weijie , WU Jiewei , YUAN Jie     
School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
Foundation item: This work was supported by the National Natural Science Foundation of China (Grant No. 81903509)
Abstract: To clarify the chemical constituents and their biological activities of Eurya chinensis, eleven compounds were isolated from its MeOH extract by various column chromatography methods, and the anti-proliferative activity of compounds against human nasopharyngeal carcinoma cells (5-8F) were evaluated. Basis on spectral data, their structures were identified as isoastinlbin (1), 3,5,7-trihydroxychromone-3-O-α-L-arabino-pyranoside (2), 1-O-trans-cinnamoyl-β-D-glucopyranose (3), 2-(4-hydroxyphenyl)ethyl-6-O-(E)-cinnamoyl-β-D-glucopyranoside (4), eutigoside D (5), 6-O-coumaroyl-1-O-[2-(3,4-dihydroxyphenyl)ethyl]-β-D-glucopyranoside (6), eutigoside A (7), 2-(4-hydroxypheny)ethyl-[6-O-(E)-caffeoyl]-β-D-glucopyranoside (8), grayanoside A (9), 4-hydroxyphenylethyl-1-O-β-D-[6′-O-(4-hydroxybenzoyl)]-glucopyranoside (10), benzyl-4′-hydroxybenzoyl-3′-O-β-D-glucopyranoside (11). Compound 4 was isolated from natural resources for the first time, while the compounds 2-4, 8-11 were obtained from the genus Eurya for the first time. The compound 10 showed moderate inhibitory activity on the proliferation of 5-8F cells by MTT method.
Key words: Eurya    E. chinensis    Phenolic glycoside    5-8F cell    Cytotoxicity    

柃木属(Eurya)是山茶科(Theaceae)的第二大属,全球约有130种,广泛分布于亚洲热带和亚热带地区。我国有81种,主要分布于云南、福建、江西、广东各省区[12]。目前从柃木属植物中分离得到的化学成分主要有萜类、黄酮及其苷类、木脂素及其苷类,简单苯丙素及其苷类等。同时,柃木属植物提取物或化学成分在抗肿瘤、抗炎、抗氧化等方面表现出显著的药理活性[39]。米碎花(E. chinensis)是山茶科柃木属常绿灌木,广泛分布于我国南方各省,根据《中华本草》记载[10],米碎花多以根部或茎叶入药,具有清热解毒,除湿敛疮的功效,多用于预防流感、治疗鼻咽癌以及水火烫伤。研究表明,米碎花中的二萜、香豆素成分具有抗炎、抗肿瘤等活性[69],但关于该植物系统的化学成分及其生物活性的报道较少。

鼻咽癌是我国南方地区高发恶性肿瘤,目前放射治疗仍是其首选疗法,但其易转移、易复发的特点仍然威胁着人的生命健康,因此寻求有效防治鼻咽癌的方法具有十分重要的意义。近年来,为发挥我国中药资源优势,从天然来源获取抗肿瘤有效成分已日渐取得成效,紫杉醇、喜树碱、长春新碱等目前已成为某些肿瘤的首选药。本课题对米碎花乙醇提取物的乙酸乙酯萃取部分进行化学成分的分离鉴定,以及基于米碎花治疗鼻咽癌的民间用药经验对其进行体外抗人鼻咽癌细胞增殖活性评价,以寻求具有抗鼻咽癌活性的天然产物。

1 材料和方法 1.1 材料

试验植物于2019年1月采集于广东省恩平市大松岭公园,经广州中医药大学中药学院吴杰伟副研究员鉴定为山茶科柃木属米碎花(Eurya chinensis)的枝叶,样品存放于广州中医药大学中药学院新药先导化合物实验室,标本号No. 2020032701。

人鼻咽癌细胞株5-8F购于中国科学院上海生命科学院细胞资源中心。

1.2 仪器和试剂

Bruker AV-400 MHz核磁共振波谱仪;Waters 2695 LC-Waters Acquity ELSD-Waters 3100 SQDMS液质联用仪;Waters Sunfire® RP C18分析型色谱柱(3.5 μm, 4.6 mm×100 mm);MCI Gel CHP20P (75~ 150 μm, 日本三菱化学);柱层析硅胶(100~200、200~ 300目)薄层层析硅胶板(青岛海洋化工厂); Sephadex LH-20凝胶(Pharmacia公司);Agilent 1100制备型高效液相;Waters Sunfire® RP C18制备型色谱柱(5 μm, 30 mm×150 mm);FM-500显微镜(上海普丹光学仪器);CO2细胞培养箱(上海力申科学仪器有限公司);垂直超净工作台(上海智城分析仪器制造有限公司);MK3型酶标仪(Thermo公司)。

RPMI-1640培养基(Gibco公司);胎牛血清(Gibco公司);PBS缓冲液(Gibco公司);青霉素-链霉素(Thermo公司);细胞级DMSO (Sigma公司); MTT噻唑兰(Sigma公司);色谱纯乙腈(Merck公司);纯水、超纯水系统(Millipore公司);其他有机溶剂均为分析纯。

1.3 提取和分离

35 kg米碎花干燥枝叶用95%乙醇室温浸泡提取3次,每次7 d,过滤并合并3次提取液,减压浓缩得到总浸膏2.4 kg。将总浸膏用水悬浮,乙酸乙酯萃取3次,减压浓缩合并萃取液,得到乙酸乙酯部位浸膏1.5 kg。乙酸乙酯部位经MCI柱层析分离,以乙醇-水[20:80、50:50、80:20,V/V (下同)]梯度洗脱,得到Fr. 2、Fr. 5、Fr. 8共3个组分。Fr. 5 (600 g)用硅胶拌样,经硅胶柱层析分离,以石油醚-乙酸乙酯(1:1、1:2、0:1)梯度洗脱,根据薄层色谱结果合并组分,得到组分Fr. 5A~Fr. 5Q。Fr. 5I~Fr. 5L经Sephadex LH-20凝胶柱色谱(甲醇洗脱)分离, 分别得到组分Fr. 5I1~Fr. 5I4、Fr. 5J1~Fr. 5J4、Fr. 5K1~ Fr. 5K3和Fr. 5L1~Fr. 5L4。其中,Fr. 5I3 (521.5 mg)、Fr. 5I4 (970.5 mg)、Fr. 5J3 (1.89 g)、Fr. 5K1 (387.8 mg)经制备型高效液相(乙腈-水=5:95~35:65, 20 mL/min, 0~120 min)纯化,分别得到化合物1 (58.2 mg)、2 (26.1 mg)、3 (28.1 mg)、4 (3.0 mg)。Fr. 5L4 (1.29 g)经硅胶柱色谱分离,以二氯甲烷-甲醇(20:1、10:1、5:1)梯度洗脱,根据薄层色谱结果合并组分,得到组分Fr. 5L4A~ Fr. 5L4R,再经制备型高效液相(乙腈-水=5:95~35:65,20 mL/min,0~120 min)纯化, 分别得到化合物5 (6.0 mg)、6 (6.7 mg)、7 (32.1 mg)、8 (8.2 mg)、9 (14.5 mg)、10 (6.2 mg)和11 (8.5 mg)。

1.4 结构鉴定

化合物1  白色粉末;ESI-MS m/z: 451.53 [M + H]+; 分子式C21H22O11; 1H NMR (400 MHz, DMSO-d6): δH 11.69 (1H, s, 5-OH), 10.91 (1H, br s, 7-OH), 8.84 (2H, each s, 3′, 4′-OH), 6.78 (1H, d, J = 1.6 Hz, H-2′), 6.68~6.63 (2H, m, H-5′, 6′), 5.89 (1H, d, J = 2.0 Hz, H-8), 5.86 (1H, d, J = 2.0 Hz, H-6), 5.49 (1H, d, J = 2.6 Hz, H-2), 4.74 (1H, d, J = 4.3 Hz, H-3), 4.70 (1H, d, J = 1.5 Hz, H-1″), 3.39~2.36 (4H, m, H-2″~H-5″), 0.78 (3H, d, J = 6.1 Hz, H-6″); 13C NMR (100 MHz, DMSO-d6): δC 80.0 (C-2), 73.4 (C-3), 193.1 (C-4), 164.0 (C-5), 96.2 (C-6), 167.1 (C-7), 95.2 (C-8), 162.5 (C-9), 100.3 (C-10), 126.4 (C-1′), 115.1 (C-2′), 145.0 (C-3′), 145.2 (C-4′), 114.1 (C-5′), 117.6 (C-6′), 98.8 (C-1″), 70.2 (C-2″), 70.3 (C-3″), 71.2 (C-4″), 69.0 (C-5″), 17.6 (C-6″)。以上数据与文献[11]报道一致, 故鉴定为异落新妇苷。

化合物2  白色粉末; ESI-MS m/z: 341.62 [M + H]+; 分子式C15H16O9; 1H NMR (400 MHz, CD3OD): δH 8.11 (1H, s, H-2), 6.34 (1H, d, J = 2.0 Hz, H-8), 6.22 (1H, d, J = 2.1 Hz, H-6), 5.33 (1H, d, J = 1.7 Hz, H-1′), 4.14 (1H, dd, J = 1.8, 3.4 Hz, H-2′), 3.82 (1H, dd, J = 3.2, 9.1 Hz, H-3′), 3.76 (1H, dd, J = 6.2, 9.4 Hz, H-5′), 3.47 (1H, t, J = 9.5 Hz, H-4′), 1.28 (3H, d, J = 6.2 Hz, H-6′); 13C NMR (100 MHz, CD3OD): δC 147.9 (C-2), 140.3 (C-3), 178.7 (C-4), 163.4 (C-5), 100.0 (C-6), 166.2 (C-7), 94.9 (C-8), 159.3 (C-9), 106.4 (C-10), 102.1 (C-1′), 71.6 (C-2′), 73.5 (C-3′), 71.1 (C-4′), 71.9 (C-5′), 17.9 (C-6′)。以上数据与文献[12]报道一致,故鉴定为3,5,7-三羟基色原酮-3-O-α-L-鼠李糖苷。

化合物3  黄色粉末; ESI-MS m/z: 311.37 [M + H]+; 分子式C15H18O7; 1H NMR (400 MHz, CD3OD): δH 7.81 (1H, d, J = 16.0 Hz, H-3′), 7.62 (2H, m, H-5′, 9′), 7.42 (3H, m, H-6′, 7′, 8′), 6.59 (1H, d, J = 16.0 Hz, H-2′), 5.63 (1H, d, J = 7.8 Hz, H-1), 3.88 (1H, dd, J = 1.8, 12.0 Hz, H-6a), 3.72 (1H, dd, J = 4.5, 12.0 Hz, H-6b), 3.50~3.32 (4H, m, H-2, 3, 4, 5); 13C NMR (100 MHz, CD3OD): δC 95.9 (C-1), 73.9 (C-2), 77.9 (C-3), 71.0 (C-4), 78.8 (C-5), 62.3 (C-6), 167.1 (C-1′), 118.2 (C-2′), 147.7 (C-3′), 135.5 (C-4′), 129.3 (C-5′, 9′), 130.0 (C-6′, 8′), 131.8 (C-7′)。以上数据与文献[13]报道一致,故鉴定为1-O-反式-肉桂酰基-β-D-葡萄糖。

化合物4  黄色粉末; ESI-MS m/z: 431.19 [M + H]+; 分子式C23H26O8; 1H NMR (400 MHz, CD3OD): δH 7.70 (1H, d, J = 16.0 Hz, H-3′), 7.54 (2H, m, H-5′, 9′), 7.40 (3H, m, H-6′, 7′, 8′), 7.04 (2H, d, J = 8.4 Hz, H-4″, 8″), 6.64 (2H, d, J = 8.5 Hz, H-5″, 7″), 6.55 (1H, d, J = 16.0 Hz, H-2′), 4.53 (1H, dd, J = 2.2, 11.9 Hz, H-6a), 4.37 (1H, d, J = 6.3 Hz, H-6b), 4.34 (1H, d, J = 7.9 Hz, H-1), 3.95 (1H, m, H-1″a), 3.72 (1H, m, H-1″b), 3.54 (1H, m, H-5), 3.37 (2H, overlapped, H-2, 3), 3.22 (1H, t, J = 7.8 Hz, H-4), 2.84 (2H, t, J = 7.6 Hz, H-2″); 13C NMR (100 MHz, CD3OD): δC 104.6 (C-1), 75.0 (C-2), 75.4 (C-3), 71.8 (C-4), 77.9 (C-5), 64.7 (C-6), 168.5 (C-1′), 118.6 (C-2′), 146.6 (C-3′), 135.7 (C-4′), 129.2 (C-5′, 9′), 130.0 (C-6′, 8′), 131.6 (C-7′), 72.5 (C-1″), 36.5 (C-2″), 130.5 (C-3″), 130.9 (C-4″, 8″), 116.1 (C-5″, 7″), 156.8 (C-6″)。以上数据与文献[14]报道一致,故鉴定为1-O-(4-羟基苯乙基)-6-O-反式-桂皮酰基-β-D-葡萄糖。

化合物5  黄色粉末; ESI-MS m/z: 447.37 [M + H]+; 分子式C23H26O9; 1H NMR (400 MHz, CD3OD): δH 7.69 (1H, d, J = 16.0 Hz, H-3′), 7.55 (2H, m, H-5′, 9′), 7.38 (3H, m, H-6′, 7′, 8′), 6.61 (1H, d, J = 2.9 Hz, H-4″), 6.59 (1H, d, J = 8.7 Hz, H-7″), 6.55 (1H, d, J = 16.1 Hz, H-2′), 6.47 (1H, dd, J = 2.9, 8.6 Hz, H-8″), 4.53 (1H, dd, J = 2.2, 11.8 Hz, H-6a), 4.36 (1H, d, J = 7.8 Hz, H-1), 4.34 (1H, dd. J = 6.0, 11.9 Hz, H-6b), 3.99 (1H, m, H-1″a), 3.79 (1H, m, H-1″b), 3.55 (1H, m, H-5), 3.37 (2H, overlapped, H-3, 4), 3.23 (1H, m, H-2), 2.89 (2H, t, J = 7.5 Hz, H-2″); 13C NMR (100 MHz, CD3OD): δC 104.7 (C-1), 75.4 (C-2), 77.9 (C-3), 71.7 (C-4), 75.0 (C-5), 64.9 (C-6), 168.5 (C-1′), 118.6 (C-2′), 146.6 (C-3′), 135.7 (C-4′), 129.3 (C-5′, 9′), 130.0 (C-6′, 8′), 131.5 (C-7′), 71.1 (C-1″), 32.2 (C-2″), 127.0 (C-3″), 118.3 (C-4″), 151.1 (C-5″), 149.4 (C-6″), 114.8 (C-7″), 116.9 (C-8″)。以上数据与文献[15]报道一致,故鉴定为eutigoside D。

化合物6  黄色粉末; ESI-MS m/z: 463.23 [M + H]+; 分子式C23H26O10; 1H NMR (400 MHz, CD3OD): δH 7.62 (2H, d, J = 8.7 Hz, H-5′, 9′), 6.87 (2H, d, J = 12.8 Hz, H-3′), 6.74 (2H, d, J = 8.7 Hz, H-6′, 8′), 6.66 (2H, overlapped, C-4″, 7″), 6.52 (1H, dd, J = 2.0, 8.0 Hz, H-8″), 5.80 (1H, d, J = 12.7 Hz, C-2′), 4.47 (1H, dd, J = 2.1, 11.8 Hz, H-6a), 4.28 (1H, d, J = 7.8 Hz, H-1), 4.27 (1H, dd, J = 6.1, 11.9 Hz, H-6b), 3.89 (1H, m, H-1″a), 3.66 (1H, m, H-1″b), 3.48 (1H, m, H-5), 3.35 (1H, m, H-4), 3.29 (1H, m, H-3), 3.19 (1H, t, J = 7.7 Hz, H-2), 2.75 (2H, m, H-2″); 13C NMR (100 MHz, CD3OD): δC 104.1 (C-1), 75.0 (C-2), 77.9 (C-3), 71.7 (C-4), 75.3 (C-5), 64.5 (C-6), 168.2 (C-1′), 116.3 (C-2′), 145.3 (C-3′), 127.6 (C-4′), 115.9 (C-5′, 9′), 133.7 (C-6′, 8′), 160.0 (C-7′), 72.3 (C-1″), 36.6 (C-2″), 131.4 (C-3″), 117.1 (C-4″), 144.6 (C-5″), 146.1 (C-6″), 116.3 (C-7″), 121.2 (C-8″)。以上数据与文献[16]报道基本一致,故鉴定为1-O-(3,4-二羟基苯乙基)-6-O-反式-香豆酰基-β-D-葡萄糖。

化合物7  白色粉末; ESI-MS m/z: 469.68 [M + Na]+; 分子式C23H26O9; 1H NMR (400 MHz, DMSO-d6): δH 7.52 (1H, d, J = 15.9 Hz, H-3′), 7.48 (2H, d, J = 8.6 Hz, H-5′, 9′), 6.98 (2H, d, J = 8.4 Hz, H-4″, 8″), 6.76 (2H, d, J = 8.6 Hz, H-6′, 8′), 6.59 (2H, d, J = 8.4 Hz, H-5″, 7″), 6.38 (1H, d, J = 15.9 Hz, H-2′), 4.37 (1H, dd, J = 2.0, 11.9 Hz, H-6a), 4.22 (1H, d, J = 7.8 Hz, H-1), 4.15 (1H, dd, J = 6.6, 11.8 Hz, H-6b), 3.78 (1H, m, H-1″a), 3.59 (1H, m, H-1″b), 3.38 (1H, m, H-5), 3.13 (2H, overlapped, H-2, 3), 2.98 (1H, m, H-4), 32.70 (2H, t, J = 7.5 Hz, H-2″); 13C NMR (100 MHz, DMSO-d6): δC 103.0 (C-1), 73.3 (C-2), 76.5 (C-3), 70.1 (C-4), 73.7 (C-5), 63.6 (C-6), 166.0 (C-1′), 114.5 (C-2′), 145.3 (C-3′), 125.0 (C-4′), 115.7 (C-5′, 9′), 129.7 (C-6′, 8′), 159.8 (C-7′), 70.2 (C-1″), 35.4 (C-2″), 128.5 (C-3″), 130.4 (C-4″, 8″), 115.0 (C-5″, 7″), 155.6 (C-6″)。以上数据与文献[3]报道一致,故鉴定为eutigoside A。

化合物8  黄色粉末; ESI-MS m/z: 485.61 [M + Na]+; 分子式C23H26O10; 1H NMR (400 MHz, CD3OD): δH 7.56 (1H, d, J = 15.8 Hz, H-3′), 7.05 (1H, m, H-5′), 7.03 (2H, m, H-4″, 8″), 6.89 (1H, dd, J = 2.0, 8.2 Hz, H-9′), 6.77 (1H, d, J = 8.2 Hz, H-8′), 6.65 (2H, d, J = 8.3 Hz, H-5″, 7″), 6.28 (1H, d, J = 15.9 Hz, H-2′), 4.49 (1H, dd, J = 2.2, 11.8 Hz, H-6a), 4.34 (1H, dd, J = 6.0, 11.9 Hz, H-6b), 4.33 (1H, d, J = 7.9 Hz, H-1), 3.94 (1H, m, H-1″a), 3.73 (1H, m, H-1″b), 3.52 (1H, m, H-5), 3.36 (2H, overlapped, H-3, 4), 3.21 (1H, m, H-2), 2.83 (2H, m, H-2″); 13C NMR (100 MHz, CD3OD): δC 104.5 (C-1), 75.0 (C-2), 77.9 (C-3), 71.7 (C-4), 75.4 (C-5), 64.6 (C-6), 169.1 (C-1′), 114.8 (C-2′), 147.2 (C-3′), 127.7 (C-4′), 115.0 (C-5′), 149.6 (C-6′), 146.2 (C-7′), 116.5 (C-8′), 123.1 (C-9′), 72.4 (C-1″), 36.5 (C-2″), 130.6 (C-3″), 130.9 (C-4″, 8″), 116.1 (C-5″, 7″), 156.7 (C-6″)。以上数据与文献[17]报道一致,故鉴定为1-O-(4-羟基苯乙基)-6-O-反式-咖啡酰基-β-D-葡萄糖。

化合物9  白色粉末; ESI-MS m/z: 476.63 [M + Na]+; 分子式C24H28O10; 1H NMR (400 MHz, CD3OD): δH 7.62 (1H, d, J = 15.8 Hz, H-3′), 7.14 (1H, d, J = 1.9 Hz, H-5′), 7.03 (2H, d, J = 8.3 Hz, H-4″, 8″), 7.01 (1H, overlapped, H-9′), 6.80 (1H, d, J = 8.1 Hz, H-8′), 6.64 (2H, d, J = 8.4 Hz, H-5″, 7″), 6.38 (1H, dd, J = 15.9 Hz, H-2′), 4.51 (1H, dd, J = 2.2, 11.9 Hz, H-6a), 4.35 (1H, dd, J = 6.2, 11.9 Hz, H-6b), 4.33 (1H, d, J = 7.8 Hz, H-1), 3.94 (1H, m, H-1″a), 3.86 (3H, s, 6′-OCH3), 3.71 (1H, m, H-1″b), 3.53 (1H, m, H-5), 3.37 (2H, overlapped, H-3, 4), 3.22 (1H, m, H-2), 2.83 (2H, m, H-2″); 13C NMR (100 MHz, CD3OD): δC 104.5 (C-1), 75.0 (C-2), 77.9 (C-3), 71.8 (C-4), 75.4 (C-5), 64.7 (C-6), 169.1 (C-1′), 115.2 (C-2′), 147.1 (C-3′), 127.6 (C-4′), 111.6 (C-5′), 150.6 (C-6′), 149.3 (C-7′), 116.5 (C-8′), 124.2 (C-9′), 72.5 (C-1″), 36.5 (C-2″), 130.6 (C-3″), 130.9 (C-4″, 8″), 116.1 (C-5″, 7″), 156.7 (C-6″), 56.4 (6′-OCH3)。以上数据与文献[18]报道一致,故鉴定为grayanoside A。

化合物10  黄色粉末; ESI-MS m/z: 419.50 [M-H];分子式C21H24O91H NMR (400 MHz, CD3OD): δH 7.89 (2H, d, J = 8.8 Hz, H-3′, 7′), 6.98 (2H, d, J = 8.5 Hz, H-4″, 8″), 6.80 (2H, d, J = 8.8 Hz, H-4′, 6′), 6.66 (2H, d, J = 8.4 Hz, H-5″, 7″), 4.59 (1H, dd, J = 2.2, 11.8 Hz, H-6a), 4.41 (1H, dd, J = 6.3, 11.8 Hz, H-6b), 4.34 (1H, d, J = 7.8 Hz, H-1), 3.90 (1H, m, H-1″a), 3.72 (1H, m, H-1″b), 3.58 (1H, m, H-5), 3.39 (2H, overlapped, H-3, 4), 3.22 (1H, m, H-2), 2.81 (2H, m, H-2″); 13C NMR (100 MHz, CD3OD): δC 104.5 (C-1), 75.1 (C-2), 78.0 (C-3), 71.9 (C-4), 75.5 (C-5), 64.8 (C-6), 168.0 (C-1′), 122.1 (C-2′), 132.9 (C-3′, 7′), 116.2 (C-4′, 6′), 163.7 (C-5′), 72.3 (C-1″), 36.5 (C-2″), 130.5 (C-3″), 130.9 (C-4″, 8″), 116.1 (C-5″, 7″), 156.7 (C-6″)。以上数据与文献[19]报道一致,故鉴定为1-O-(4-羟基苯乙基)-6-O-(4-羟基苯甲酰基)-β-D-葡萄糖。

化合物11  黄色粉末; ESI-MS m/z: 429.23 [M + Na]+; 分子式C20H22O9; 1H NMR (400 MHz, CD3OD): δH 7.62 (1H, d, J = 3.0 Hz, H-2′), 7.48 (2H, dd, J = 1.8, 8.4 Hz, H-2, 6), 7.41 (2H, m, H-3, 5), 7.36 (1H, m, H-4), 7.32 (1H, dd, J = 3.0, 9.0 Hz, H-6′), 6.89 (1H, d, J = 9.0 Hz, H-5′), 5.39 (2H, d, J = 4.0 Hz, H-7), 4.75 (1H, d, J = 6.3 Hz, H-1″), 3.80 (1H, dd, J = 2.3, 12.1 Hz, H-6″a), 3.69 (1H, dd, J = 5.0, 12.1 Hz, H-6″b), 3.42 (3H, m, H-3″, 4″, 5″), 3.36 (1H, m, H-2″); 13C NMR (100 MHz, CD3OD): δC 137.0 (C-1), 129.4 (C-2, 6), 129.7 (C-3, 5), 129.5 (C-4), 68.2 (C-7), 113.4 (C-1′), 118.4 (C-2′), 151.5 (C-3′), 158.4 (C-4′), 119.1 (C-5′), 127.3 (C-6′), 170.7 (C-7′), 103.6 (C-1″), 74.8 (C-2″), 77.9 (C-3″), 71.1 (C-4″), 78.0 (C-5″), 62.3 (C-6″)。以上数据与文献[20]报道一致,故鉴定为3-O-β-D-葡萄糖基-4-羟基-苄基苯甲酸酯。

图 1 化合物1~11的化学结构式 Fig. 1 Structures of compounds 1-11
1.5 细胞毒活性评价

采用四氮唑盐还原法(MTT法)[21]评价米碎花化学成分1~11体外抗人鼻咽癌细胞(5-8F)增殖活性。取化合物1~11,收集对数生长期的5-8F细胞,以含10%胎牛血清及1%青霉素-链霉素的RPMI-1640培养基制成细胞悬液,以1×104/孔接种于96孔板后置于37 ℃,5% CO2培养箱培养。培养12 h后,设置调零孔(培养基)、对照孔(细胞、培养基)和给药孔,给药孔分别加入浓度为100、50、25、12.5、6.25、3.12 μmol/L的待试药液,并设置3个复孔,37 ℃,5% CO2培养。24 h后每孔加入20 μL MTT溶液(5 mg/mL),继续培养4 h后终止培养,弃去孔内培养液,每孔加入150 μL DMSO,置于摇床上震荡10 min,在酶标仪490 nm处检测各孔吸光值,计算细胞抑制率以及半数抑制浓度(IC50)。

结果表明,化合物10具有中等抑制5-8F细胞增殖活性,其IC50值为(29.52±3.34) μmol/L,其他化合物均显示出微弱的抑制5-8F细胞增殖活性(IC50值> 100 μmol/L)。

2 结果和讨论

本研究通过多种色谱技术对米碎花植物化学成分进行分离,经波谱数据分析得到11个化合物,分别为异落新妇苷(1)、3,5,7-三羟基色原酮-3-O-α-L-鼠李糖苷(2)、1-O-反式-桂皮酰基-β-D-葡萄糖(3)、1-O-(4-羟基苯乙基)-6-O-反式-桂皮酰基-β-D-葡萄糖(4)、eutigoside D (5)、1-O-(3,4-二羟基苯乙基)-6-O-反式-香豆酰基-β-D-葡萄糖(6)、eutigoside A (7)、1-O-(4-羟基苯乙基)-6-O-反式-咖啡酰基-β-D-葡萄糖(8)、grayanoside A (9)、1-O-(4-羟基苯乙基)-6-O-(4-羟基苯甲酰基)-β-D-葡萄糖(10)、3-O-β-D-葡萄糖基-4-羟基-苄基苯甲酸酯(11)。其中,化合物4为首次从植物中分离得到,化合物2~48~11均为首次从该属植物中分离获得。同时,本研究评价化合物1~11对人鼻咽癌细胞5-8F增殖活性的影响,结果表明,化合物10具有中等抑制5-8F细胞增殖活性。

研究表明,酚苷类化合物在抗氧化、抗肿瘤、抗病毒、抗炎等方面表现出广泛的药理活性[2224]。根据报道,本研究鉴定的化合物2具有较强的细胞毒活性,能够抑制人结肠癌细胞、口腔表皮样癌细胞以及乳腺癌细胞的增殖[25];化合物6对DPPH自由基具有较高的清除能力,从而表现出明显的抗氧化活性[26];化合物7通过抑制过氧化氢诱导的氧化应激人结肠癌细胞中IL-8的分泌,表现出一定的抗氧化、抗炎活性[27]

本研究所得部分成分具有一定的抗鼻咽癌活性,为米碎花的抗鼻咽癌应用提供了科学依据,也为米碎花的进一步研究与开发提供依据。

参考文献
[1]
CHANG H T. Eurya of the Chinese flora[J]. Acta Phytotax Sin, 1954, 3(1): 1-59.
张宏达. 中国柃属植物志[J]. 植物分类学报, 1954, 3(1): 1-59.
[2]
Delectis Florae Reipublicae Popularis Sinicae, Agendae Academiae Sinicae Edita. Florae Reipublicae Popularis Sinicae, Tomus 50[M]. Beijing: Science Press, 1998: 132.
中国科学院中国植物志编辑委会. 中国植物志, 第50卷[M]. 北京: 科学出版社, 1998: 132.
[3]
KHAN I A, ERDELMEIER C A, STICHER O, et al. New phenolic glucosides from the leaves of Eurya tigang[J]. J Nat Prod, 1992, 55(9): 1270-1274. DOI:10.1021/np50087a014
[4]
KUO L M Y, ZHANG L J, HUANG H T, et al. Antioxidant lignans and chromone glycosides from Eurya japonica[J]. J Nat Prod, 2013, 76(4): 580-587. DOI:10.1021/np3007638
[5]
PARK S Y, YANG H C, MOON J Y, et al. Induction of the apoptosis of HL-60 promyelocytic leukemia cells by Eurya emarginata[J]. Cancer Lett, 2004, 205(1): 31-38. DOI:10.1016/j.canlet.2003.09.034
[6]
SONG J L, YUAN Y, TAN H B, et al. Anti-inflammatory and antimicrobial coumarins from the stems of Eurya chinensis[J]. J Asian Nat Prod Res, 2017, 19(3): 222-228. DOI:10.1080/10286020.2016.1191474
[7]
SONG J L, YUAN Y, TAN H B, et al. Euryachins A and B, a new type of diterpenoids from Eurya chinensis with potent NO production inhibitory activity[J]. RSC Adv, 2016, 6(89): 85958-85961. DOI:10.1039/c6ra11994h
[8]
SONG J L, YUAN Y, NIE L H, et al. Two new ent-kaurane diterpenes from the stems of Eurya chinensis[J]. J Asian Nat Prod Res, 2017, 20(10): 962-968. DOI:10.1080/10286020.2017.1373099
[9]
SONG J L, YUAN Y, NIE L H, et al. A new ent-kaurane diterpene derivative from the stems of Eurya chinensis R. Br[J]. Nat Prod Res, 2017, 32(2): 182-188. DOI:10.1080/14786419.2017.1343327
[10]
Editorial Board of Chinese Materia Medica, State Administration of Traditional Chinese Medicine. Chinese Materia Medica, Vol. 9[M]. Shanghai: Shanghai Science and Technology Press, 1999: 578.
国家中医药管理局《中华本草》编委会. 中华本草, 第9卷[M]. 上海: 上海科学技术出版社, 1999: 578.
[11]
YUAN J Z, DOU D Q, CHEN Y J, et al. Studies on dihydroflavonol glycosides from rhizome of Smilax glabra[J]. China J Chin Mat Med, 2004, 29(9): 867-870.
袁久志, 窦德强, 陈英杰, 等. 土茯苓二氢黄酮醇类成分研究[J]. 中国中药杂志, 2004, 29(9): 867-870. DOI:10.3321/j.issn:1001-5302.2004.09.014
[12]
WANG Q Q, ZHANG Y, YE W C, et al. Chemical constituents of Rhododendron seniavinii[J]. China J Chin Mat Med, 2013, 38(3): 366-370.
汪青青, 张英, 叶文才, 等. 满山白化学成分研究[J]. 中国中药杂志, 2013, 38(3): 366-370. DOI:10.4268/cjcmm20130315
[13]
HIRADATE S, MORITA S, SUGIE H, et al. Phytotoxic cis-cinnamoyl glucosides from Spiraea thunbergii[J]. Phytochemistry, 2004, 65(6): 731-739. DOI:10.1016/j.phytochem.2004.01.010
[14]
KHONG D T, JUDEH Z M A. Short synthesis of phenylpropanoid glycoside grayanoside-A and analogues[J]. Carbohydr Res, 2016, 436: 50-53. DOI:10.1016/j.carres.2016.11.010
[15]
OH T H, BAIK J S, YOO E S, et al. New phenylpropanoid glycosides from Eurya emarginata (Thunb.) Makino[J]. Bull Korean Chem Soc, 2011, 32(8): 3175. DOI:10.5012/bkcs.2011.32.8.3175
[16]
ES-SAFI N E, KHLIFI S, KERHOAS L, et al. Antioxidant constituents of the aerial parts of Globularia alypum growing in Morocco[J]. J Nat Prod, 2005, 68(8): 1293-1296. DOI:10.1021/np0501233
[17]
HANHINEVA K, SOININEN P, Anttonen M J, et al. NMR and UPLC-qTOF-MS/MS characterisation of novel phenylethanol derivatives of phenylpropanoid glucosides from the leaves of strawberry (Fragaria×ananassa cv. Jonsok)[J]. Phytochem Anal, 2009, 20(5): 353-364. DOI:10.1002/pca.1133
[18]
SHIMOMURA H, SASHIDA Y, ADACHI T. Cyanogenic and phenylpropanoid glucosides from Prunus grayana[J]. Phytochemistry, 1987, 26(8): 2363-2366. DOI:10.1016/S0031-9422(00)84720-2
[19]
PIAO Y, ZHANG C H, NI J H, et al. Chemical constituents from the stem bark of Acer tegmentosum[J]. Biochem Syst Ecol, 2020, 89: 103982. DOI:10.1016/j.bse.2019.103982
[20]
KIM J, SONG S, LEE I, et al. Anti-inflammatory activity of constituents from Glechoma hederacea var. longituba[J]. Bioorg Med Chem Lett, 2011, 21(11): 3483-3487. DOI:10.1016/j.bmcl.2011.02.002
[21]
MOSMANN T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays[J]. J Immunol Methods, 1983, 65(1/2): 55-63. DOI:10.1016/0022-1759(83)90303-4
[22]
ZUO Y. Research progress on polyphenols[J]. Cereals Oils, 2013, 26(4): 6-10.
左玉. 多酚类化合物研究进展[J]. 粮食与油脂, 2013, 26(4): 6-10.
[23]
WENG W, ZHANG Q M, LI S K, et al. Research progress in antiviral effect and mechanism of plant polyphenols[J]. China J Trad Chin Med Pharm, 2020, 35(12): 6236-6240.
翁蔚, 张琴梅, 李书魁, 等. 植物多酚抗病毒功效及机制研究进展[J]. 中华中医药杂志, 2020, 35(12): 6236-6240.
[24]
KUMAR S, PANDEY A K. Chemistry and biological activities of flavonoids: An overview[J]. Sci World J, 2013(2013): 162750. DOI:10.1155/2013/162750
[25]
YUENYONGSAWAD S, BUNLUEPUECH K, WATTANAPIROMS AKUL C, et al. Anti-cancer activity of compounds from Bauhinia strychnifolia stem[J]. J Ethnopharmacol, 2013, 150(2): 765-769. DOI:10.1016/j.jep.2013.09.025
[26]
ES-SAFI N E, KOLLMANN A, KHLIFI S, et al. Antioxidative effect of compounds isolated from Globularia alypum L. structure-activity relationship[J]. LWT, 2007, 40(7): 1246-1252. DOI:10.1016/j.lwt.2006.08.019
[27]
YE Y L, CHANG H S, TSENG Y F, et al. Suppression of IL-8 release by sweet olive ethanolic extract and compounds in WiDr colon adenocarcinoma cells[J]. J Food Sci, 2017, 82(8): 1792-1798. DOI:10.1111/1750-3841.13786