2. 遵义医科大学生物工程学院, 广东 珠海 519041
2. School of Bioengineering, Zunyi Medical University, Zhuhai 519041, Guangdong, China
毛茛科(Ranunculaceae)乌头属(Aconitum)植物是重要的中药药源植物。目前《中华人民共和国药典》[1]正式收录2种乌头属植物:乌头(A. carmichaelii)和北乌头(A. kusnezoffii)。此外,我国民间至少还有76种乌头属植物药用,如短柄乌头(A. brachypodum)、黄花乌头(A. coreanum)、铁棒锤(A. pendulum)、瓜叶乌头(A. hemsleyanum)等[2]。紫草乌(A. episcopale),异名西南乌头、深裂黄草乌、藤乌, 是我国特有的药用乌头种,分布于云南西北部和四川西南部,生长在海拔2 400~3 200 m山地[3]。紫草乌块根具有罕见的解救其他草乌中毒作用,其以“堵喇”之名在西南地区已有近千年药用历史,纳西族医药古籍《东巴经》、彝族医药古籍《造药治病书》和清代《植物名实图考》中均有记载,有报道该植物提取物具有一定的抗心律失常作用[4]。
二萜生物碱是乌头属植物的特征性有效成分,紫草乌含大量的二萜生物碱类成分[5]。为更好地开发利用我国这一特色药用乌头资源,本课题组对云南丽江的紫草乌开展生物碱成分研究,从其根中分离出10个二萜生物碱,此外,鉴于乌头类药材的毒性主要表现为心脏毒性,采用CCK-8试剂盒(Cell Counting Kit-8)法测试部分化合物对小鼠心脏细胞H9c2的毒性,为紫草乌的开发与利用提供科学依据。
1 材料和方法 1.1 仪器和材料DRX-500和DRX-600型NMR仪(德国Bruker公司);G3250AA TOF型MS仪(美国Agilent公司);UPHW-Ⅱ-90T型超纯水机(四川优普超纯科技有限公司);Spectramax M5多功能酶标仪(美国Molecular Devices公司),CB150型CO2培养箱(德国Binder公司)。
DMEM培养基、胎牛血清(FBS)和青霉素-链霉素(PS) (美国Invitrogen公司);胰蛋白酶(美国Gibco公司);96孔板、CCK-8试剂盒(上海碧云天公司);柱色谱硅胶(300~400目)和GF254型薄层色谱硅胶板(青岛海洋化工厂);葡聚糖凝胶Sephadex LH-20 (美国GE公司);三氯甲烷、甲醇、石油醚、二乙胺、氨水(分析纯,天津化学试剂有限公司); 氘代三氯甲烷(CDCl3) (宁波旋光医药科技有限公司); 改良碘化铋钾试剂(碱式硝酸铋0.85 g,加冰醋酸10 mL、水40 mL溶解,再加40%碘化钾溶液20 mL摇匀,得前液;取前液1 mL,加0.6 mol/L盐酸2 mL, 加水至10 mL即得)。
紫草乌原药材于2018年11月采于云南省丽江市,经保山学院汪建云教授鉴定为毛茛科乌头属植物紫草乌(Aconitum episcopale)的根,标本(2018-ae-1)保存于保山学院。大鼠心肌细胞H9c2购自美国标准生物品收藏中心(ATCC)。
1.2 提取和分离紫草乌块根10.0 kg阴干、粉碎后,用0.1 mol/L盐酸40 L进行渗漉,至渗漉液无生物碱反应。渗辘液以25%氨水调至pH 9,加入乙酸乙酯萃取3次, 每次约20 L。合并乙酸乙酯层,减压浓缩得深褐色总生物碱浸膏47.5 g。总生物碱浸膏以硅胶(300~ 400目, 下同)拌样,进行硅胶柱色谱,以三氯甲烷-甲醇(50:1→1:1)梯度洗脱。采用薄层色谱法通过改良碘化铋钾试剂显色监测洗脱过程,合并相同组分,结果共获得8个洗脱组分(Fr.A~Fr.H)。
取Fr.B组分(1.5 g),经硅胶柱色谱(石油醚-丙酮-二乙胺,100:20:1)和凝胶柱色谱(甲醇),得化合物2 (45 mg)和3 (15 mg)。取Fr.C组分(0.5 g),经硅胶柱色谱(石油醚-丙酮-二乙胺,100:20:1)和凝胶柱色谱(甲醇),得化合物1 (24 mg)。取Fr.D组分(2.5 g), 依次经硅胶柱色谱(石油醚-丙酮-二乙胺, 100:20:1)、凝胶柱色谱(甲醇)和硅胶柱色谱(三氯甲烷-甲醇, 10:1),得化合物4 (35 mg)、5 (3 mg)和6 (18 mg)。取Fr.E组分(3.8 g),经硅胶柱色谱(石油醚-丙酮-二乙胺,100:20:1),得化合物7 (230 mg)和8 (4 mg)。取Fr.F组分(1.8 g),经硅胶柱色谱(石油醚-丙酮-二乙胺,100:20:1)和凝胶柱色谱(甲醇),得化合物10 (13 mg)。取Fr.G组分(1.3 g),经硅胶柱色谱(石油醚-丙酮-二乙胺,100:20:1),得化合物9 (186 mg)。
1.3 体外心脏细胞毒性测定方法参照张丽娟等[6]的方法,大鼠心肌细胞H9c2培养于含10%胎牛血清、1%双抗(青霉素、链霉素)的DMEM培养液中,待细胞生长到80%左右,用0.25%胰蛋白酶消化传代,置于含5% CO2的37 ℃恒温培养箱中培养后换液,根据细胞状态及密度定期进行换液或传代。将对数生长期H9c2细胞计数接种于96孔板中(100 μL/孔,即5×103 cells/孔),每孔加入完全培养基0.1 mL,于37 ℃、5% CO2培养箱中过夜,弃上清液,考察细胞抑制率,每组平行6次,药物作用24 h后,每孔加入10% CCK-8溶液20 μL,在37 ℃培养2 h,用酶标仪测定450 nm处的吸光度A450,计算细胞抑制率(I)。空白组细胞抑制率为0,I=(1-实验组A450/对照组A450)×100%。采用统计学软件GraphPad Prism 5.0 (GraphPad Software Inc., USA)中的Tukey对细胞抑制率进行单因子方差分析(One-Way ANOVA),实验重复3次。
1.4 结构鉴定化合物1 白色针晶;分子式C35H49NO11, ESI-MS m/z: 660.34 [M + H]+; 1H NMR (500 MHz, CDCl3): δH 7.99 (2H, d, J = 8.8 Hz, H-2′/H-6′), 6.91 (2H, d, J = 8.8 Hz, H-3′/H-5′), 4.86 (1H, d, J = 5.2 Hz, H-14), 4.01 (1H, d, J = 6.6 Hz, H-6), 3.86 (3H, s, OCH3-4′), 3.53, 3.29, 3.25, 3.15 (各3H, s, OCH3×4), 3.76 (1H, dd, J = 9.6 Hz, 7.6 Hz, H-3), 3.62, 3.48 (各1H, ABq, J = 9.0 Hz, H-18), 3.38 (1H, dd, J = 8.8, 5.8 Hz, H-16), 3.11 (1H, dd, J = 8.2, 6.0 Hz, H-1), 3.00 (1H, brs, H-7), 2.86 (1H, brs, H-17), 1.33 (3H, s, OCOCH3-8), 1.09 (3H, t, J = 7.2 Hz, NCH2CH3); 13C NMR (125 MHz, CDCl3): δC 82.3 (C-1), 33.7 (C-2), 71.6 (C-3), 43.3 (C-4), 47.5 (C-5), 83.2 (C-6), 48.8 (C-7), 85.6 (C-8), 44.8 (C-9), 40.9 (C-10), 50.3 (C-11), 35.3 (C-12), 74.8 (C-13), 78.6 (C-14), 39.7 (C-15), 83.6 (C-16), 61.8 (C-17), 77.2 (C-18), 48.9 (C-19), 47.5 (C-21), 13.4 (C-22), 55.9 (OCH3-1), 57.9 (OCH3-6), 58.9 (OCH3-16), 59.2 (OCH3-18), 21.7 (OCOCH3-8), 170.0 (OCOCH3-8), 166.1 (OCO-14), 122.6 (C-1′), 131.8 (C-2′/C-6′), 113.9 (C-3′/C-5′), 163.5 (C-4′), 55.5 (OCH3-4′)。以上数据与文献[7]报道一致, 故鉴定为滇乌碱。
化合物2 白色粉末; 分子式C35H49NO10, ESI-MS m/z: 644.34 [M + H]+; 1H NMR (500 MHz, CDCl3): δH 8.00 (2H, d, J = 8.8 Hz, H-2′/H-6′), 6.91 (2H, d, J = 8.8 Hz, H-3′/H-5′), 4.86 (1H, d, J = 5.1 Hz, H-14), 3.86 (3H, s, OCH3-4′), 3.51, 3.27, 3.25, 3.14 (各3H, s, OCH3×4), 3.95 (1H, d, J = 6.8 Hz, H-6), 3.59, 3.17 (各1H, ABq, J = 8.6 Hz, H-18), 3.37 (1H, dd, J = 9.0, 5.6 Hz, H-16), 3.01 (1H, m, H-1), 2.99 (1H, brs, H-17), 1.32 (3H, s, OCOCH3-8), 1.08 (3H, t, J = 7.2 Hz, NCH2CH3); 13C NMR (125 MHz, CDCl3): δC 83.8 (C-1), 26.4 (C-2), 35.0 (C-3), 39.4 (C-4), 49.2 (C-5), 83.1 (C-6), 45.2 (C-7), 85.7 (C-8), 49.6 (C-9), 41.1 (C-10), 50.3 (C-11), 35.9 (C-12), 75.0 (C-13), 78.6 (C-14), 39.4 (C-15), 85.1 (C-16), 62.2 (C-17), 80.5 (C-18), 53.7 (C-19), 49.3 (C-21), 13.6 (C-22), 56.3 (OCH3-1), 57.9 (OCH3-6), 58.8 (OCH3-16), 59.4 (OCH3-18), 21.8 (OCOCH3-8), 170.0 (OCOCH3-8), 166.2 (OCO-14), 122.8 (C-1′), 131.8 (C-2′/C-6′), 113.8 (C-3′/C-5′), 163.5 (C-4′), 55.5 (OCH3-4′)。以上数据与文献[8]报道一致, 故鉴定为粗茎乌头碱甲。
化合物3 白色粉末; 分子式C35H49NO9, ESI-MS m/z: 628.35 [M + H]+; 1H NMR (600 MHz, CDCl3): δH 8.00 (2H, d, J = 8.8 Hz, H-2′/H-6′), 6.91 (2H, d, J = 8.8 Hz, H-3′/H-5′), 5.02 (1H, t, J = 4.8 Hz, H-14), 3.85 (3H, s, OCH3-4′), 3.37, 3.27, 3.26, 3.17 (各3H, s, OCH3×4), 4.05 (1H, d, J = 6.5 Hz, H-6), 3.62, 3.22 (各1H, ABq, J = 8.4 Hz, H-18), 3.32 (1H, m, H-16), 3.04 (1H, m, H-1), 2.99 (1H, brs, H-17), 1.38 (3H, s, OCOCH3-8), 1.07 (3H, t, J = 7.2 Hz, NCH2CH3); 13C NMR (150 MHz, CDCl3): δC 85.2 (C-1), 26.6 (C-2), 35.0 (C-3), 39.3 (C-4), 49.5 (C-5), 83.0 (C-6), 45.1 (C-7), 86.0 (C-8), 49.3 (C-9), 44.1 (C-10), 50.5 (C-11), 29.1 (C-12), 39.3 (C-13), 75.5 (C-14), 38.0 (C-15), 83.6 (C-16), 61.8 (C-17), 80.6 (C-18), 53.9 (C-19), 49.2 (C-21), 13.6 (C-22), 56.2 (OCH3-1), 58.0 (OCH3-6), 56.7 (OCH3-16), 59.3 (OCH3-18), 21.9 (OCOCH3-8), 169.9 (OCOCH3-8), 166.7 (OCO-14), 123.1 (C-1′), 131.9 (C-2′/C-6′), 113.9 (C-3′/C-5′), 163.4 (C-4′), 55.6 (OCH3-4′)。以上数据与文献[9]报道一致, 故鉴定为黄草乌碱丙。
化合物4 淡黄色粉末; 分子式C35H49NO10, ESI-MS m/z: 644.34 [M + H]+; 1H NMR (500 MHz, CDCl3): δH 7.98 (2H, d, J = 8.5 Hz, H-2′/H-6′), 6.89 (1H, d, J = 8.5 Hz, H-3′/H-5′), 5.01 (1H, t, J = 5.0 Hz, H-14), 4.09 (1H, d, J = 6.5 Hz, H-6), 3.61, 3.46 (各1H, ABq, J = 9.0 Hz, H-18), 3.34, 3.30, 3.27, 3.23 (各3H, s, OCH3×4), 3.83 (3H, s, OCH3-3′), 1.38 (3H, s, OCOCH3-8), 1.07 (3H, t, J = 7.2 Hz, NCH2CH3); 13C NMR (125 MHz, CDCl3): δC 83.9 (C-1), 33.7 (C-2), 72.1 (C-3), 43.5 (C-4), 47.2 (C-5), 82.7 (C-6), 45.2 (C-7), 86.2 (C-8), 49.1 (C-9), 43.5 (C-10), 50.8 (C-11), 28.8 (C-12), 39.6 (C-13), 75.7 (C-14), 38.5 (C-15), 83.1 (C-16), 61.8 (C-17), 77.5(C-18), 49.1 (C-19), 48.0 (C-21), 13.6 (C-22), 170.2 (OCOCH3-8), 22.1 (OCOCH3-8), 55.8 (OCH3-1), 57.0 (OCH3-6), 56.0 (OCH3-16), 59.5 (OCH3-18), 166.4 (OCO-14), 123.2 (C-1′), 132.1 (C-2′/C-6′)), 114.1 (C-3′/C-5′), 163.8 (C-4′), 55.8 (OCH3-3′)。以上数据与文献[5]报道一致, 故鉴定为黄草乌碱甲。
化合物5 白色粉末; 分子式C33H47NO9, ESI-MS m/z: 602.33 [M + H]+; 1H NMR (500 MHz, CDCl3): δH 7.95 (2H, d, J = 9.0 Hz, H-2′/H-6′), 6.91 (2H, d, J = 9.0 Hz, H-3′/H-5′), 5.12 (1H, d, J = 5.0 Hz, H-14), 4.01 (1H, d, J = 5.4 Hz, H-6), 3.83 (3H, s, OCH3-4′), 3.35, 3.27, 3.25, 3.23 (各3H, s, OCH3×4), 3.62, 2.60 (1H, ABq, J = 9.0 Hz, H-18), 3.30 (1H, m, H-16), 3.11 (1H, dd, J = 10.3, 6.3 Hz, H-1), 3.05 (1H, brs, H-7), 1.07 (3H, t, J = 7.2 Hz, NCH2CH3); 13C NMR (125 MHz, CDCl3): δC 85.6 (C-1), 26.3 (C-2), 35.2 (C-3), 39.5 (C-4), 49.9 (C-5), 82.7 (C-6), 48.6 (C-7), 73.9 (C-8), 53.7 (C-9), 42.5 (C-10), 50.4 (C-11), 36.7 (C-12), 76.4 (C-13), 80.3 (C-14), 42.0 (C-15), 83.5 (C-16), 62.4 (C-17), 80.8 (C-18), 53.9 (C-19), 49.4 (C-21), 13.8 (C-22), 56.5 (OCH3-1), 58.4 (OCH3-6), 57.7 (OCH3-16), 59.4 (OCH3-18), 166.8 (OCO-14), 122.6 (C-1′), 132.0 (C-2′/C-6′), 114.0 (C-3′/C-5′), 163.7 (C-4′), 55.6 (OCH3-4′)。以上数据与文献[10]报道一致, 故鉴定为丽乌亭。
化合物6 白色粉末; 分子式C33H47NO9, ESI-MS m/z: 602.33 [M + H]+; 1H NMR (500 MHz, CDCl3): δH 7.62 (1H, dd, J = 8.8, 2.0 Hz, H-6′), 7.56 (1H, d, J = 2.0 Hz, H-2′), 6.87 (1H, d, J = 8.4 Hz, H-5′), 5.14 (1H, t, J = 5.0 Hz, H-14), 4.11 (1H, d, J = 6.8 Hz, H-6), 3.91, 3.90 (各3H, s, OCH3-3′, OCH3-4′), 3.29, 3.28, 3.25, 3.19 (各3H, s, OCH3×4), 3.68, 2.59 (各1H, ABq, J = 8.6 Hz, H-18), 3.04 (1H, dd, J = 10.2, 6.4 Hz, H-1), 2.94 (1H, brs, H-7), 1.07 (3H, t, J = 7.2 Hz, NCH2CH3); 13C NMR (150 MHz, CDCl3): δC 85.6 (C-1), 26.4 (C-2), 35.0(C-3), 39.3 (C-4), 47.0 (C-5), 82.0 (C-6), 53.9 (C-7), 74.0 (C-8), 49.7 (C-9), 45.3 (C-10), 50.4 (C-11), 29.3 (C-12), 37.2 (C-13), 76.9 (C-14), 41.6 (C-15), 82.9 (C-16), 62.0 (C-17), 80.8 (C-18), 54.1 (C-19), 49.2 (C-21), 13.7 (C-22), 56.2 (OCH3-1), 57.8 (OCH3-6), 56.3 (OCH3-16), 59.3 (OCH3-18), 166.2 (OCO-14), 123.0 (C-1′), 110.5 (C-2′), 148.8 (C-3′), 153.0 (C-4′), 112.2 (C-5′), 123.6 (C-6′), 56.0 (OCH3-3′), 56.1 (OCH3-4′)。以上数据与文献[11]报道一致, 故鉴定为猎鹰乌头碱。
化合物7 无色针晶; 分子式C25H39NO5, ESI-MS m/z: 434.29 [M + H]+; 1H NMR (400 MHz, CDCl3): δH 4.81 (1H, t, J = 5.0 Hz, H-14), 2.04 (3H, s, OCOCH3-14), 3.26, 3.21 (各3H, s, OCH3×2), 3.10 (1H, dd, J = 10.8, 6.6 Hz, H-1), 3.18 (1H, dd, J = 9.4, 4.2 Hz, H-1), 2.95 (1H, brs, H-7), 0.76 (3H, s, CH3-18), 1.04 (3H, t, J = 7.2 Hz, NCH2CH3); 13C NMR (150 MHz, CDCl3): δC 86.2 (C-1), 26.5 (C-2), 38.0 (C-3), 34.6 (C-4), 50.9 (C-5), 25.5 (C-6), 46.3 (C-7), 74.0 (C-8), 45.5 (C-9), 45.0 (C-10), 49.1 (C-11), 28.7 (C-12), 35.7 (C-13), 77.2 (C-14), 41.2 (C-15), 81.9 (C-16), 62.0 (C-17), 26.5 (C-18), 56.3 (C-19), 49.5 (C-21), 13.7 (C-22), 56.3 (OCH3-1), 56.4 (OCH3-16), 170.9 (OCOCH3-14), 21.5 (OCOCH3-14)。以上数据与文献[5]报道一致, 故鉴定为14-O-乙酰萨卡可尼亭。
化合物8 白色粉末; 分子式C23H37NO4, ESI-MS m/z: 392.28 [M + H]+; 1H NMR (500 MHz, CDCl3): δH 4.81 (1H, d, J = 4.3 Hz, OH-14), 4.12 (1H, dd, J = 9.5, 4.8 Hz, H-14), 3.41 (1H, m, H-16), 3.08 (1H, dd, J = 10.9, 6.5 Hz, H-1), 3.36, 3.25 (各3H, s, OCH3×2), 3.12 (1H, brs, H-7), 3.08, 2.98 (各1H, ABq, J = 9.0 Hz, H-18), 1.04 (3H, t, J = 7.2 Hz, NCH2CH3); 13C NMR (150 MHz, CDCl3): δC 86.8 (C-1), 26.5 (C-2), 38.1 (C-3), 37.8 (C-4), 51.0 (C-5), 25.3 (C-6), 45.9 (C-7), 73.1 (C-8), 47.2 (C-9), 37.7 (C-10), 49.1 (C-11), 27.9 (C-12), 47.2 (C-13), 75.8 (C-14), 38.6 (C-15), 82.4 (C-16), 62.7 (C-17), 26.4 (C-18), 57.0 (C-19), 49.6 (C-21), 13.9 (C-22), 56.5 (OCH3-1), 56.6 (OCH3-16)。以上数据与文献[12]报道一致, 故鉴定为萨卡可尼亭。
化合物9 白色针晶;分子式C25H41NO6, ESI-MS m/z: 452.29 [M + H]+; 1H NMR (500 MHz, CDCl3): δH 4.56 (1H, d, J = 4.2 Hz, OH-14), 4.19 (1H, d, J = 6.9 Hz, H-6), 4.09 (1H, dd, J = 9.8, 4.9 Hz, H-14), 3.39 (1H, m, H-16), 2.98 (1H, dd, J = 10.7, 6.5 Hz, H-1), 3.33, 3.01, 3.29, 3.23 (各3H, s, OCH3×4), 3.12 (1H, brs, H-7), 3.71, 2.63 (各1H, ABq, J = 8.5 Hz, H-18), 1.06 (3H, t, J = 7.2 Hz, NCH2CH3); 13C NMR (150 MHz, CDCl3): δC 86.4 (C-1), 26.1 (C-2), 35.4 (C-3), 39.6 (C-4), 48.8 (C-5), 82.5 (C-6), 52.7 (C-7), 72.7 (C-8), 50.5 (C-9), 45.7 (C-10), 50.4 (C-11), 28.5 (C-12), 38.0 (C-13), 75.7 (C-14), 38.9 (C-15), 82.2 (C-16), 62.8 (C-17), 80.9 (C-18), 53.9 (C-19), 49.5 (C-21), 13.9 (C-22), 56.4 (OCH3-1), 57.5 (OCH3-6), 56.6 (OCH3-16), 59.4 (OCH3-18)。以上数据与文献[11]报道一致, 故鉴定为查斯曼宁。
化合物10 白色粉末;分子式C23H35NO3, ESI-MS m/z: 374.27 [M + H]+; 1H NMR (500 MHz, CDCl3): δH 5.30 (1H, d, J = 5.2 Hz, H-7), 3.39 (1H, m, H-16), 3.31, 3.15 (各3H, s, OCH3×2), 0.72 (3H, s, J = 8.5 Hz, H-18), 0.96 (3H, t, J = 7.2 Hz, NCH2CH3);13C NMR (150 MHz, CDCl3):δC 85.2 (C-1), 26.4 (C-2), 39.2 (C-3), 33.5 (C-4), 41.6 (C-5), 22.8 (C-6), 119.3 (C-7), 137.4 (C-8), 46.9 (C-9), 48.5 (C-10), 41.3 (C-11), 36.5(C-12), 48.9 (C-13), 218.6 (C-14), 37.5 (C-15), 80.1 (C-16), 49.9 (C-17), 26.1 (C-18), 58.1 (C-19), 52.7 (C-21), 12.7 (C-22), 54.9 (OCH3-1), 56.1 (OCH3-16)。以上数据与文献[13]报道一致, 故鉴定为展毛黄草乌碱A。
1.5 体外心脏细胞毒性初步评价结果表明,测试的紫草乌根中二萜生物碱均对H9c2细胞增殖有抑制作用。与空白对照相比,二萜生物碱对H9c2细胞增殖的抑制率随浓度增加而升高,且差异达显著水平(P < 0.05)。从表 1可见, 250 μg/mL二萜生物碱的抑制率为32.12%~70.33%,半数抑制浓度(IC50)为163.8~341.6 μg/mL。其中双酯类化合物(C-8和C-14均取代有酯基,如化合物1~4)表现出较高的H9c2细胞毒性(IC50 < 250 μg/mL),而单酯类(如化合物7)和醇胺类成分(化合物9和10)则表现出相对低的H9c2细胞毒性。此外,总生物碱对H9c2的细胞毒性比单体化合物低(IC50=442.4 μg/mL)。
本研究从云南的紫草乌中分离鉴定了10个乌头碱型C19-二萜生物碱类化合物,分别为滇乌碱(1)、粗茎乌头碱甲(2)、黄草乌碱丙(3)、黄草乌碱甲(4)、丽乌亭(5)、猎鹰乌头碱(6)、14-O-乙酰萨卡可尼亭(7)、萨卡可尼亭(8)、查斯曼宁(9)和展毛黄草乌碱A (10),其中化合物5、6和10为首次从该植物中分离得到。C19-乌头碱型二萜生物碱为紫草乌的主要化学成分[5, 14–15]。紫草乌中的C19-二萜生物碱包括双酯类(化合物1~4)、单酯类(化合物5~ 7)和醇胺类生物碱(化合物8~10),其中单酯碱和醇胺碱的含量高于双酯碱。
细胞毒性结果表明,双酯型C19-二萜生物碱的心脏细胞毒性高于单酯型和醇胺型。动物药理研究也已证实,双酯类C19-乌头碱型二萜生物碱具有极强的毒性,但随着C-8位酯基和C-14位芳香酯基的先后水解,形成单酯类和醇胺类生物碱则毒性大为降低,并可表现出一定的抗心律失常作用[16–17]。单酯类和醇胺类C19-乌头碱或为紫草乌抗心律失常作用的有效成分,是其发挥解救其他乌头中毒的药效物质。此外,紫草乌总生物碱对H9c2毒性比单体化合物低,或源于组分间相互作用的结果,提示总生物碱中存在具有拮抗心脏毒性的成分,这与乌头类药材如附子兼具致心律失常与抗心律失常作用的表现一致[16]。
[1] |
Chinese Pharmacopoeia Commission. Pharmacopoeia of the People's Republic of China, Vol. 1[M]. Beijing: China Medical Science Press, 2005: 39–191. 国家药典委员会. 中华人民共和国药典, 一部[S]. 北京: 中国医药科技出版社, 2005: 39–191. |
[2] |
XIAO P G, WANG F P, GAO F, et al. A pharmacophylogenetic study of Aconitum L. (Ranunculaceae) from China[J]. Acta Phytotax Sin, 2006, 44(1): 1-46. 肖培根, 王锋鹏, 高峰, 等. 中国乌头属植物药用亲缘学研究[J]. 植物分类学报, 2006, 44(1): 1-46. |
[3] |
WANG W T. Flora Reipublicae Popularis Sinicae, Tomus 27[M]. Beijing: Science Press, 1979: 264. 王文采. 中国植物志, 第27卷[M]. 北京: 科学出版社, 1979: 264. |
[4] |
LIANG J Y, YAN Z Y, CHEN X, et al. Research on the anti-arrhythmic effect of Yi Nationality herb "Dulao"[J]. Lishizhen Med Mat Med Res, 2008, 19(9): 2108-2109. 梁俊玉, 严铸云, 陈新, 等. 彝药"都拉"抗心律失常药理作用的研究[J]. 时珍国医国药, 2008, 19(9): 2108-2109. |
[5] |
SHEN X J, MA J R, WANG Z B, et al. Study on the diterpenoid alkaloids of Aconitum episcopale from Dali[J]. Chem Res Appl, 2020, 32(2): 308-311. 沈晓静, 马俊蓉, 王志斌, 等. 大理紫乌头的二萜生物碱成分研究[J]. 化学研究与应用, 2020, 32(2): 308-311. DOI:10.3969/j.issn.1004-1656.2020.02.022 |
[6] |
ZHANG L J, TANG X E, YAO M Q, et al. Investigation of the toxicity of three alkaloids in Junggar aconitum on H9c2 cells[J]. J Xinjiang Med Univ, 2018, 41(11): 1391-1395. 张丽娟, 汤兴娥, 姚美琪, 等. 准噶尔乌头中3种生物碱对H9c2细胞的毒性研究[J]. 新疆医科大学学报, 2018, 41(11): 1391-1395. DOI:10.3969/j.issn.1009-5551.2018.11.017 |
[7] |
XIONG J, LIU W Y, HE D, et al. Diterpenoid alkaloids in aerial parts of Aconitum transsectum[J]. Chin Trad Herb Drugs, 2019, 50(10): 2279-2284. 熊娇, 刘王艳, 何丹, 等. 直缘乌头地上部分二萜生物碱成分研究[J]. 中草药, 2019, 50(10): 2279-2284. DOI:10.7501/j.issn.0253-2670.2019.10.004 |
[8] |
GAO F, LI Y Y, WANG D, et al. Diterpenoid alkaloids from the Chinese traditional herbal "Fuzi" and their cytotoxic activity[J]. Molecules, 2012, 17(5): 5187-5194. DOI:10.3390/molecules17055187 |
[9] |
GUO Z J, YANG Z Y, TAN W H, et al. Chemical constituents from processed products of Aconitum vilmoriniani radix[J]. J Chin Med Mat, 2015, 38(5): 988-991. 郭志俊, 杨竹雅, 谭文红, 等. 制黄草乌化学成分研究[J]. 中药材, 2015, 38(5): 988-991. DOI:10.13863/j.issn1001-4454.2015.05.025 |
[10] |
PELLETIER S W, YING C S, JOSHI B S, et al. The structures of forestine and foresticine, two new C19-diterpenoid alkaloids from Aconitum forrestii Stapf.[J]. J Nat Prod, 1984, 47(3): 474-477. DOI:10.1021/np50033a013 |
[11] |
DESAI H K, PELLETIER S W. Falconericine and falconeridine: Two new alkaloids from Aconitum falconeri Stapf.[J]. Heterocycles, 1989, 29(2): 225-230. DOI:10.3987/COM-89-4795 |
[12] |
YIN T P, LUO Z H, WANG M, et al. Study on diterpenoid alkaloids in Aconitum carmichaeli from Guizhou Province[J]. China Pharm, 2019, 30(22): 3096-3100. 尹田鹏, 罗智慧, 王敏, 等. 黔产乌头的二萜生物碱类成分研究[J]. 中国药房, 2019, 30(22): 3096-3100. DOI:10.6039/j.issn.1001-0408.2019.22.14 |
[13] |
CAI L, FANG H X, YIN T P, et al. Unusual C19-diterpenoid alkaloids from Aconitum vilmorinianum var. patentipilum[J]. Phytochem Lett, 2015, 14: 106-110. DOI:10.1016/j.phytol.2015.09.010 |
[14] |
LI Y M, GONG Y, JIANG Y P, et al. Diterpenoid alkaloids from Aconitum episcopale[J]. Chin Trad Herb Drugs, 2013, 44(8): 951-954. 李咏梅, 龚元, 姜艳萍, 等. 紫乌头中二萜生物碱的研究[J]. 中草药, 2013, 44(8): 951-954. DOI:10.7501/j.issn.0253-2670.2013.08.006 |
[15] |
YANG J H, LI Z Y, LI L, et al. Diterpenoid alkaloids from Aconitum episcopale[J]. Phytochemistry, 1999, 50(2): 345-348. DOI:10.1016/S0031-9422(98)00387-2 |
[16] |
ZHOU Y P. Review and consideration of studies on arrhythmia-inducing and anti-arrhythmic effects of "Fuzi" (Ⅳ)[J]. Pharmacol Clin Chin Mat Med, 2015, 31(5): 153-158. 周远鹏. 附子致心律失常和抗心律失常作用研究的综述及其思考(四)[J]. 中药药理与临床, 2015, 31(5): 153-158. DOI:10.13412/j.cnki.zyyl.2015.05.050 |
[17] |
DZHAKHANGIROV F N, SULTANKHODZHAEV M N, TASHKHODZHAEV B, et al. Diterpenoid alkaloids as a new class of antiarrhythmic agents: Structure-activity relationship[J]. Chem Nat Compd, 1997, 33(2): 190-202. DOI:10.1007/BF02291540 |