文章快速检索     高级检索
  热带亚热带植物学报  2023, Vol. 31 Issue (3): 387-394  DOI: 10.11926/jtsb.4608
0

引用本文  

权帆, 张健, 颜健, 等. 大叶藤黄叶片的化学成分及其抗氧化活性研究[J]. 热带亚热带植物学报, 2023, 31(3): 387-394. DOI: 10.11926/jtsb.4608.
QUAN Fan, ZHANG Jian, YAN Jian, et al. Chemical Constituents and Antioxidant Activities of Garcinia xanthochymus Leaves[J]. Journal of Tropical and Subtropical Botany, 2023, 31(3): 387-394. DOI: 10.11926/jtsb.4608.

基金项目

国家自然科学基金项目(31800283)资助

通信作者

黎平, E-mail: liping2016@scau.edu.cn

作者简介

权帆(1997年生),女,硕士研究生,研究方向为植物资源开发及利用研究。E-mail: 15060059695@163.com

文章历史

收稿日期:2022-01-17
接受日期:2022-02-22
大叶藤黄叶片的化学成分及其抗氧化活性研究
权帆 , 张健 , 颜健 , 黎平     
华南农业大学资源环境学院, 农业农村部华南热带农业环境重点实验室, 广州 510642
摘要:为了解药用植物大叶藤黄(Garcinia xanthochymus)叶片的化学成分,采用UPLC-QTOF-MS从叶片中得到19个化合物,主要为双黄酮类、黄酮类和间苯三酚类化合物。采用色谱分离法从叶片的80%甲醇提取物中分离得到5个单体化合物,根据理化性质及波谱数据,分别鉴定为二氢山奈酚(1)、dulcisbiflavonoid A (2)、7-去甲基银杏双黄酮(3)、mono-[2-(4-carboxy-phenoxycarbonyl)-vinyl] ester (4)、山奈酚(5)。化合物12为首次从大叶藤黄中分离得到,化合物34为首次从藤黄属植物中分离得到。化合物15清除DPPH自由基的IC50值分别为146.8和39.0 μg/mL,表明其具有抗氧化活性。
关键词大叶藤黄        化学成分    黄酮类    抗氧化活性    
Chemical Constituents and Antioxidant Activities of Garcinia xanthochymus Leaves
QUAN Fan , ZHANG Jian , YAN Jian , LI Ping     
Laboratory of Tropical Agro-Environment in South China, Ministry of Agriculture and Rural Affairs, College of Resources and Environment, South China Agricultural University, Guangzhou 510642, China
Foundation item: This work was supported by the National Nature Science Foundation of China (Grant No. 31800283)
Abstract: To study the chemical constituents of Garcinia xanthochymus leaves, nineteen compounds were obtained from its leaves by UPLC-QTOF-MS, including bioflavonoids, flavonoids and phloroglucinols. Five compounds were isolated from 80% methanol extract of leaves by chromatographic methods. On the basis of spectral data, they were identified as dihydrokaempferol (1), dulcisbiflavonoid A (2), bilobetin (3), mono-[2-(4-carboxy-phenoxycarbonyl)-vinyl] ester (4) and kaempferol (5). Compounds 1 and 2 were isolated from G. xanthochymus for the first time, while compounds 3 and 4 were isolated from genus Garcinia for the first time. Compounds 1 and 5 showed antioxidant activity with IC50 of 146.8 and 39.0 μg/mL, respectively.
Key words: Garcinia xanthochymus    Leaf    Chemical constituent    Flavonoid    Antioxidant activity    

大叶藤黄(Garcinia xanthochymus)为藤黄科(Clusiaceae)藤黄属植物,俗称假山竹,主要分布在云南南部、西南部至西部、广西南部、台湾南部、福建、广东、海南等地区[1]。在民间大叶藤黄广泛用于治疗腹泻、痢疾、恶心和呕吐[2],大叶藤黄也是我国传统的傣药之一[3],茎和叶的汁用于驱虫, 清火退热,解食物中毒,其成熟果实可直接食用, 味道较酸,嫩叶作为蔬菜煮食,而在东南亚地区,有许多国家以大叶藤黄入药[4]

现代植物化学研究表明,大叶藤黄的化学成分为苯甲酮、黄酮、双黄酮、三萜和多异戊烯基呫吨酮等化合物[5]。为了进一步了解大叶藤黄的化学成分,促进该植物的综合开发利用,本研究对云南西双版纳产大叶藤黄叶片的化学成分进行分析,超高液相-四极杆飞行时间质谱联用仪(UPLC-QTOF-MS)分析和鉴定了19个化合物,通过多种色谱法和波谱法分离和鉴定了5个化合物。

1 材料和方法 1.1 仪器和材料

AVANCE-600型核磁共振波谱仪(德国Bruker公司);紫外光谱仪Evolution 300紫外-可见光谱仪(Thermo Fisher Scientific);TLC (薄层层析)硅胶板和柱色谱硅胶(青岛海洋化工有限公司);MCI GEL (日本三菱公司);Sephadex LH-20葡聚糖凝胶(美国安玛西公司);超高液相-四极杆飞行时间质谱联用仪(UPLC-QTOF-MS, Xevo G2, 美国沃特世科技有限公司);Synergy MX酶标仪(BIOTEK公司);色谱纯甲酸和乙腈(美国Thermo Fisher公司);其余试剂均为分析纯分析级试剂(广州化学试剂厂)。

本研究所用大叶藤黄采自云南西双版纳,经华南农业大学羊海军博士鉴定为藤黄科藤黄属植物大叶藤黄(Garcinia xanthochymus),凭证标本存放于华南农业大学标本馆。

1.2 UPLC-QTOF-MS分析

供试品溶液的制备  大叶藤黄叶片经粉碎后,以体积分数80%甲醇浸泡提取3次,合并提取液,减压浓缩后得到浸膏,取适量叶片提取物溶于色谱甲醇,配制成1 mg/mL样品溶液,用0.22 μm微孔滤膜过滤,装于2 mL液相样品瓶,备用。

色谱条件  Waters ACQUITY UPLC® BEH C18色谱柱(2.1 mm×100 mm, 1.70 μm);流动相: A为0.1%甲酸-水溶液,B为0.1%甲酸-乙腈溶液,梯度洗脱程序为:0~1.0 min,15%~20% B; 1.0~3.0 min, 20%~60% B;3.0~5.0 min, 60%~75% B;5.0~7.5 min, 75%~80% B; 7.5~8.5 min, 80%~95% B; 8.5~10.0 min, 95% B; 10.0~10.1 min, 95%~15% B; 10.1~12 min, 15% B; 流速为0.3 mL/min; 柱温40 ℃; 进样量2 μL。

质谱条件  质谱检测采用电喷雾离子源(ESI),在正离子模式和负离子模式下,质量扫描范围m/z 100~1 000 Da,正态的毛细管电压设定为3 kV, 负态的毛细管电压设定为1.5 kV,源温度保持在120 ℃。碰撞气体为氩气,氮气在400 ℃下用作去溶剂,扫描时间为0.5 s,通过MSE模式收集测试数据。

1.3 化合物的分离

将叶片用80%体积分数甲醇提取得到的浸膏, 均匀分散在适量纯水中,依次用等体积石油醚、氯仿和乙酸乙酯萃取后,减压浓缩获得各个萃取层的提取物。其中,乙酸乙酯层浸膏(450 g)进行硅胶柱色谱分离,以不同比例的二氯甲烷-甲醇(100:0→ 0:100)进行梯度洗脱,得到11个组分Fr.1~Fr.11。取组分Fr.4 (16 g)过MCI柱,得到组分Fr.4-1,Fr.4-1经硅胶柱层析,二氯甲烷-甲醇体系(40:1→8:1)梯度洗脱,得到29个子馏分(Fr.4-1-1~Fr.4-1-29)。馏分Fr.4-1-12经Sephadex LH-20纯化得化合物1 (9 mg), Fr.4-1-11经Sephadex LH-20纯化得化合物2 (10 mg), Fr.4-1-21经Sephadex LH-20纯化得化合物3 (12 mg), 合并Fr.4-1-13和Fr.4-1-14经Sephadex LH-20纯化得化合物4 (20 mg)和5 (13 mg)。

1.4 结构鉴定

化合物1  白色粉末;HR-ESI-MS m/z: 287.057 4 [M − H], 分子式C15H12O6; 1H NMR (600 MHz, DMSO-d6): δ 11.91 (s, 1H, 5-OH), 7.32 (d, J = 8.5 Hz, 2H, H-2′, 6′), 6.80 (d, J = 8.5 Hz, 2H, H-3′, 5′), 5.93 (d, J = 2.0 Hz, 1H, H-8), 5.87 (d, J = 2.0 Hz, 1H, H-6), 5.05 (d, J = 11.4 Hz, 1H, H-2), 4.59 (dd, J = 11.3, 2.8 Hz, 1H, H-3); 13C NMR (150 MHz, DMSO-d6): δ 197.93 (C-4), 166.88 (C-5), 163.39 (C-7), 162.66 (C-9), 157.82 (C-4′), 129.54 (C-2′, 6′), 127.65 (C-1′), 115.01 (C-3′, 5′), 100.55 (C-10), 96.13 (C-6), 95.10 (C-8), 82.97 (C-2), 71.56 (C-3)。以上数据与文献[6]报道一致,故鉴定为二氢山奈酚。

化合物2  黄色粉末;HR-ESI-MS m/z: 675.221 9 [M + H]+, 分子式C40H34O10; 1H NMR (600 MHz, DMSO-d6): δ 13.40 (s, 1H, 5″-OH), 12.98 (s, 1H, 5-OH), 10.80 (s, 1H), 10.27 (s, 1H), 7.89 (d, J = 2.2 Hz, 1H, H-2′), 7.78 (d, J = 2.0 Hz, 1H, H-6′), 7.54 (d, J = 8.8 Hz, 2H, H-2‴, H-6‴), 6.83 (s, 1H, H-3), 6.79 (s, 1H, H-3″), 6.71 (d, J = 8.7 Hz, 2H, H-3‴, H-5‴), 6.46 (d, J = 1.8 Hz, 1H, H-8), 6.18 (d, J = 1.9 Hz, 1H, H-6), 5.44 (t, J = 7.1 Hz, 1H, H-8′), 5.25 (t, J = 7.1 Hz, 1H, H-10″), 3.46 (d, J = 7.1 Hz, 1H, H-7′), 3.43 (d, J = 7.2 Hz, 1H, H-9″), 1.76 (d, J = 4.8 Hz, 9H, H-10′, H-11′, H-13″), 1.65 (s, 3H, H-12″); 13C NMR (150 MHz, DMSO-d6): δ 182.23 (C-4″), 181.66 (C-4), 164.08 (C-7), 163.87 (C-2), 163.32 (C-2″), 161.42 (C-5, C-7″), 160.93 (C-4‴), 157.97 (C-4′, C-5″), 157.31 (C-8a), 152.86 (C-8a″), 131.96 (C-9′), 130.61 (C-11″), 129.55 (C-3′), 129.30 (C-6′), 128.08 (C-2‴, C-6‴), 127.55 (C-2′), 122.38 (C-10″), 122.31 (C-8′), 121.41 (C-1‴), 115.69 (C-3‴, C-5‴), 111.51 (C-6″), 103.89 (C-4a″), 103.67 (C-4a, C-8″), 102.98 (C-3), 102.50 (C-3″), 98.80 (C-6), 93.98 (C-8), 28.79 (C-7′), 25.61 (C-12″), 25.52 (C-11′), 21.48 (C-9″), 17.80 (C-10′), 17.75 (C-13″)。以上数据与文献[7]报道一致, 故鉴定为dulcisbiflavonoid A。

化合物3  黄色粉末;HR-ESI-MS m/z: 551.098 6 [M − H],分子式C31H20O101H NMR (600 MHz, DMSO): δ 13.07 (s, 1H, OH), 12.97 (s, 1H, OH), 8.00 (dd, J = 7.6, 2.0 Hz, 2H, H-2′, 6′), 7.67 (d, J = 9.0 Hz, 2H, H-2′′′, 6′′′), 7.15 (d, J = 9.2 Hz, 1H, H-5′), 6.92 (d, J = 9.0 Hz, 2H, H-3′′′, 5′′′), 6.87 (s, 1H, H-3′′), 6.82 (s, 1H, H-3), 6.45 (d, J = 2.1 Hz, 1H, H-8), 6.41 (s, 1H, H-6′′), 6.18 (d, J = 2.1 Hz, 1H, H-6), 3.75 (s, 3H, OCH3); 13C NMR (150 MHz, DMSO): δ 182.12 (C-4′′), 181.71 (C-4), 164.10 (C-2), 163.81 (C-2′′), 163.19 (C-7), 162.18 (C-7′′), 161.93 (C-5), 161.44 (C-4′′′), 160.54 (C-5′′), 159.65 (C-4′), 157.36 (C-8a), 154.54 (C-8a′′), 131.36 (C-6′), 127.96 (C-2′, C-2′′′), 127.78 (C-6′′′), 122.99 (C-3′), 120.94 (C-1′), 120.05 (C-1′′′), 116.26 (C-5′, C-3′′′), 114.46 (C-5′′′), 104.07 (C-8′′), 103.65 (C-4a′′), 103.6 (C-4a), 103.22 (C-3), 102.99 (C-3′′), 98.82 (C-6), 98.77 (C-6′′), 93.93 (C-8), 55.48 (OCH3)。以上数据与文献[8]报道一致,故鉴定为7-去甲基银杏双黄酮。

化合物4  黄色粉末;HR-ESI-MS m/z: 357.135 4 [M + H]+,分子式C18H12O81H NMR (600 MHz, DMSO-d6): δ 7.63 (d, J = 8.5 Hz, 2H, H-2, H-6), 7.52 (d, J = 8.0 Hz, 2H, H-13, H-15), 7.50 (s, 1H, H-8), 6.80 (d, J = 8.3 Hz, 2H, H-3, H-5), 6.76 (d, J = 8.5 Hz, 2H, H-12, H-16), 6.73 (d, J = 13.1 Hz, 1H, H-2), 6.30 (d, J = 15.9 Hz, 1H, H-9), 5.73 (d, J = 12.8 Hz, 1H, H-6); 13C NMR (150 MHz, DMSO-d6): δ 168.15 (C-10), 167.93 (C-17), 159.73 (C-7), 158.60 (C-18), 144.26 (C-8), 141.43 (C-1), 132.39 (C-2, C-6), 130.18 (C-13, C-15), 125.93 (C-11), 125.42 (C-6), 117.32 (C-3, C-5), 115.90 (C-9), 115.54 (C-12, C-16), 115.00 (C-14)。以上数据与文献[9]报道一致,故鉴定为mono-[2-(4-carboxy-phenoxycarbonyl)-vinyl] ester。

化合物5  黄色粉末;HR-ESI-MS m/z: 287.056 7 [M + H]+,分子式C15H10O61H NMR (600 MHz, DMSO-d6): δ 12.48 (s, 1H, 5-OH), 10.79 (s, 1H, 7-OH), 10.11 (s, 1H, 4′-OH), 9.38 (s, 1H, 3-OH), 8.04 (d, J = 9.0 Hz, 2H, H-2′, 6′), 6.93 (d, J = 9.0 Hz, 2H, H-3′, 5′), 6.44 (d, J = 2.0 Hz, 1H, H-8), 6.19 (d, J = 2.0 Hz, 1H, H-6); 13C NMR (150 MHz, DMSO-d6): δ 175.93 (C-4), 163.91 (C-7), 160.74 (C-5), 159.22 (C-9), 156.21 (C-4′), 146.84 (C-2), 135.69 (C-3), 129.53 (C-2′, C-6′), 121.71 (C-1′), 115.47 (C-5′, C-3′), 103.08 (C-10), 98.23 (C-6), 93.51 (C-8)。以上数据与文献[10]报道基本一致,故鉴定为山奈酚。

1.5 DPPH自由基清除能力测定

将分离得到的化合物配制成质量浓度为5、10、20、40、60、80、100 μg/mL的样品,以维生素C为阳性对照,取样品和维生素C溶液各20 μL,加入100 mg/L的DPPH乙醇溶液180 μL,避光反应30 min,在517 nm下检测OD值。DPPH清除率(%)= [1-(A1-A2)/A0] ×100%, 式中,A0为空白对照吸光度值,A1为样品溶液的吸光度,A2为无水乙醇与样品溶液的吸光度值。

2 结果和分析 2.1 大叶藤黄叶片的液相质谱分析

利用UPLC-QTOF-MS对大叶藤黄叶片进行化学成分分析,得到叶片提取物中主要成分的保留时间和准分子离子峰,此外,还从MSE数据分析模式中获得所有化合物的碎片离子或二级质谱。通过准确分子量,MSE二级质谱与公共质谱数据库(METLIN,MassBank,ReSpect等)及藤黄属植物化合物的文献比较,鉴定化合物的可能结构或类型。初步从大叶藤黄叶片中鉴定了19个化合物,包括双黄酮类、黄酮类和间苯三酚类化合物(表 1),大叶藤黄叶片提取物的总离子图见图 2

图 1 化合物1~5的结构 Fig. 1 Structures of compounds 1-5
表 1 大叶藤黄叶片化合物UPLC-QTOF-MS检测结果 Table 1 Chemical constituent information of Garcinia xanthochymus leaves analyzed by UPLC-QTOF-MS
图 2 大叶藤黄叶片提取物的负态总离子图。1~19见表 1 Fig. 2 TIC chromatography (negative mode) of leaf extracts of Garcinia xanthochymus. Peaks 1-19 see Table 1.

通过与文献对比以及分析离子断裂途径,共鉴定出2个黄酮和10个双黄酮类化合物。峰2和13由准分子离子峰m/z 339.027 6 [M-H]m/z 593.127 4 [M-H]推断分子式分别为C15H15O9和C30H25O13, 经文献比对,分别鉴定为eucryphin和银椴甙;峰4由准分子离子峰m/z 719.157 0 [M + H]+推断分子式为C36H30O16。在二级质谱图中,其进一步产生m/z 557.108 0 [M + H]+碎片离子,该碎片离子在C环进行Diels-Alder重排,得到m/z 431.071 0 [M + H]+碎片离子,随后该碎片离子失去羰基得到m/z 403.082 6 [M + H]+碎片离子,通过裂解途径(图 3)初步鉴定峰4为福木苷。

图 3 褔木苷(峰4)的推断过程。A: 褔木苷质谱裂解途径; B: MSE质谱图谱(正态)。 Fig. 3 Inference process of fukugiside (peak 4). A: Proposed fragmentation pathways for fukugiside, B: MSE spectra (positive mode).

在初步分离鉴定叶片中化合物的过程中,通过数据库比较及推断离子片段裂解途径,共鉴定出2个间苯三酚类化合物。峰17由准分子离子峰m/z 483.311 4 [M-H]推断分子式为C30H44O5,特征碎片离子为m/z 329.174 7 [M-H]m/z 287.128 4 [M-H],通过裂解途径(图 4)初步鉴定峰17为garcinielliptone F。

图 4 garcinielliptone F (峰17)的推断过程。A: garcinielliptone F质谱裂解途径; B: MSE质谱图谱(负态)。 Fig. 4 Inference process of garcinielliptone F (peak 17). A: Proposed fragmentation pathways for garcinielliptone F; B: MSE spectra (negative mode).
2.2 DPPH自由基清除能力

从大叶藤黄中分离得到的化合物15均表现出有效的DPPH自由基清除效果,在5~100 μg/mL范围内,其清除能力随着质量浓度的升高而逐渐增强,IC50值分别为146.8和39.0 μg/mL (图 5)。

图 5 化合物1和5对DPPH自由基的清除作用 Fig. 5 The scavenging effect of compounds 1 and 5 on DPPH
3 结论和讨论

本研究采用UPLC-QTOF-MS对大叶藤黄叶片的主要化学成分进行分析,尝试性地鉴定出19个化合物,主要为双黄酮类、黄酮类和间苯三酚类化合物,其中,峰1、2、5、13~19为首次从该植物中报道。现代药理研究证明,黄酮类化合物具有抗肿瘤、抗自由基、抗氧化等作用[28]。此外,从大叶藤黄中分离鉴定了5个化合物,分别为二氢山奈酚(1)、dulcisbiflavonoid A (2)、7-去甲基银杏双黄酮(3)、mono-[2-(4-carboxy-phenoxycarbonyl)-vinyl] ester (4)、山奈酚(5)。其中,化合物12为首次从大叶藤黄中分离得到,化合物34为首次从藤黄属植物中分离得到;化合物15对DPPH自由基具有较强的清除活性,IC50值分别为146.8和39.0 μg/mL,其他化合物未显示活性。

据报道,化合物1通过抑制活性T细胞的细胞核因子活性来调节Ca2+内流,从而抑制T细胞的活性[29],同时,该化合物也对MCF7细胞系具有一定的抑制作用,IC50值为12.5 μg/mL[30];化合物3对细胞色素P450 2J2 (CYP2J2)具有较强的抑制作用, 可以作为CYP2J2抑制剂用于药物代谢[31];化合物5具有抗氧化、抗菌、抗炎、降脂以及抗癌效应等多种生物学作用[32]。本研究所得化合物可用于相关活性筛选,以期为大叶藤黄进行活性化学成分开发和利用提供参考。

参考文献
[1]
SONG J L, GAO H, YUAN L, et al. Study on the chemical constituents of Garcinia xanthochymus[J]. J Anhui Agric Sci, 2015, 43(32): 222-224.
宋敬丽, 高慧, 袁林, 等. 大叶藤黄化学成分研究[J]. 安徽农业科学, 2015, 43(32): 222-224. DOI:10.3969/j.issn.0517-6611.2015.32.077
[2]
JI F, LI Z L, NIU S L, et al. Studies on the chemical constituents of the barks of Garcinia xanthochymus[J]. Chin J Med Chem, 2012, 22(6): 507-510.
季丰, 李占林, 牛生吏, 等. 大叶藤黄茎皮化学成分研究[J]. 中国药物化学杂志, 2012, 22(6): 507-510. DOI:10.14142/j.cnki.cn21-1313/r.2012.06.004
[3]
ZHANG J Y, HAN Y M, CHANG Y P. Advances in studies on chemical constituents of plants in Garcinia L. and their pharmaco-logical activities[J]. Drugs Clins, 2012, 27(3): 297-303.
张俊艳, 韩英梅, 常允平. 藤黄属植物的化学成分和药理作用研究进展[J]. 现代药物与临床, 2012, 27(3): 297-303.
[4]
HAN Q B, QIAO C F, SONG J Z, et al. Cytotoxic prenylated phenolic compounds from the twig bark of Garcinia xanthochymus[J]. Chem Biodivers, 2007, 4(5): 940-946. DOI:10.1002/cbdv.200790083
[5]
KHAIRINA N, HASSAN N C, TAHER M, et al. Phytochemical constituents and pharmacological properties of Garcinia xanthochymus: A review[J]. Biomed Pharmacother, 2018, 106: 1378-1389. DOI:10.1016/j.biopha.2018.07.087
[6]
MALMIR M, GOHARI A R, SAEIDNIA S, et al. A new bioactive monoterpene-flavonoid from Satureja khuzistanica[J]. Fitoterapia, 2015, 105: 107-112. DOI:10.1016/j.fitote.2015.06.012
[7]
SAELEE A, PHONGPAICHIT S, MAHABUSARAKAM W. A new prenylated biflavonoid from the leaves of Garcinia dulcis[J]. Nat Prod Res, 2015, 29(20): 1884-1888. DOI:10.1080/14786419.2015.1010087
[8]
FENG W S, ZHU B, ZHENG X K, et al. Chemical constituents of Selaginella stautoniana[J]. Chin J Nat Med, 2011, 9(2): 108-111. DOI:10.3724/SP.J.1009.2011.00108
[9]
WEI W X, PAN Y J, CHEN Y Z, et al. Carboxylic acids from Phyllanthus urinaria[J]. Chem Nat Compd, 2005, 41(1): 17-21. DOI:10.1007/s10600-005-0064-4
[10]
WANG J R, DUAN J A, ZHOU R H. Chemical constituents from the bark of Cercidiphyllum japonicum[J]. Acta Bot Sin, 1999, 41(2): 209-212.
王静蓉, 段金廒, 周荣汉. 连香树树皮化学成分的研究[J]. 植物学报, 1999, 41(2): 209-212. DOI:10.3321/j.issn:1672-9072.999.02.020
[11]
VARUGESE S, THOMAS S, HALEEMA S, et al. Synthesis of enantiopure concave (+)-avenaciolide and (–)-canadensolide skeletons[J]. Tetrahedron Lett, 2007, 48(46): 8209-8212. DOI:10.1016/j.tetlet.2007.09.081
[12]
YOSHIMURA M, NINOMIYA K, TAGASHIRA Y, et al. Polyphenolic constituents of the pericarp of mangosteen (Garcinia mangostana L.)[J]. J Agric Food Chem, 2015, 63(35): 7670-7674. DOI:10.1021/acs.jafc.5b01771
[13]
LI Y F, CHEN Y, XIAO C Y, et al. Rapid screening and identification of α-amylase inhibitors from Garcinia xanthochymus using enzyme-immobilized magnetic nanoparticles coupled with HPLC and MS[J]. J Chromatogr B, 2014, 960: 166-173. DOI:10.1016/j.jchromb.2014.04.041
[14]
PANDEY R, CHANDRA P, KUMAR B, et al. Simultaneous deter-mination of multi-class bioactive constituents for quality assessment of Garcinia species using UHPLC-QqQLIT-MS/MS[J]. Ind Crops Prod, 2015, 77: 861-872. DOI:10.1016/j.indcrop.2015.09.041
[15]
STARK T D, RANNER J, STIGLBAUER B, et al. Construction and application of a database for a five-dimensional identification of natural compounds in garcinia species by means of UPLC-ESI-TWIMS-TOF-MS: Introducing gas phase polyphenol conformer drift time distribution intensity ratios[J]. J Agric Food Chem, 2019, 67(3): 975-985. DOI:10.1021/acs.jafc.8b06157
[16]
ARAVIND A P A, PANDEY R, KUMAR B, et al. Phytochemical screening of Garcinia travancorica by HPLC-ESI-QTOF mass spectrometry and cytotoxicity studies of the major biflavonoid fukugiside[J]. Nat Prod Commu, 2016, 11(12): 1839-1842.
[17]
ARAVIND A P A, PANDEY R, KUMAR B, et al. Phytochemical screening of Garcinia travancorica by HPLC-ESI-QTOF mass spectrometry and cytotoxicity studies of the major biflavonoid fukugiside[J]. Nat Prod Commun, 2016, 11(12): 1839-1842. DOI:10.1177/1934578X1601101216
[18]
CHEN Y, GAN F, JIN S, et al. Adamantyl derivatives and rearranged benzophenones from Garcinia xanthochymus fruits[J]. RSC Adv, 2017, 7(28): 17289-17296. DOI:10.1039/C7RA01543G
[19]
LI P, YUE G G L, KWOK H F, et al. Using ultra-performance liquid chromatography quadrupole time of flight mass spectrometry-based chemometrics for the identification of anti-angiogenic biflavonoids from edible Garcinia species[J]. J Agric Food Chem, 2017, 65(38): 8348-8355. DOI:10.1021/acs.jafc.7b02867
[20]
PARVEEN N S, SINGH M P, KHAN U, et al. Flavonoid constituents of Garcinia xanthochymus leaves[J]. Fitoterapia, 1994, 65(1): 89-90.
[21]
QUAN G H, OH S R, KIM J H, et al. Xanthone constituents of the fruits of Garcinia mangostana with anticomplement activity[J]. Phytother Res, 2010, 24(10): 1575-1577. DOI:10.1002/ptr.3177
[22]
SHIEKH K A, BENJAKUL S, SAE-LEAW T. Effect of chamuang (Garcinia cowa Roxb.) leaf extract on inhibition of melanosis and quality changes of pacific white shrimp during refrigerated storage[J]. Food Chem, 2019, 270: 554-561. DOI:10.1016/j.foodchem.2018.07.139
[23]
XU X M, SHI J L, LI L, et al. Biphenyls from the twigs of Garcinia multiflora and their antitobacco mosaic virus activities[J]. Rec Nat Prod, 2016, 10(5): 566-571.
[24]
LI Y K, WANG Z Y, WU X X, et al. Biphenyl derivatives from the twigs of Garcinia bracteata and their biological activities[J]. Phytochem Lett, 2015, 11: 24-27. DOI:10.1016/j.phytol.2014.11.003
[25]
GROSSMAN R B, YANG X W. Structural revision of garcinielliptin oxide and garcinielliptone E[J]. J Nat Prod, 2020, 83(6): 2041-2044. DOI:10.1021/acs.jnatprod.0c00306
[26]
YUN Y, SHIOURA M, HITOTSUYANAGI Y, et al. Garcinielliptone G from Garcinia subelliptica induces apoptosis in acute leukemia cells[J]. Molecules, 2021, 26(9): 2422. DOI:10.3390/molecules26092422
[27]
KLAIKLAY S, SUKPONDMA Y, RUKACHAISIRIKUL V, et al. Friedolanostanes and xanthones from the twigs of Garcinia hombreniana[J]. Phytochemistry, 2013, 85: 161-166. DOI:10.1016/j.phytochem.2012.08.020
[28]
FENG D P, DUAN B Z, XIA C L, et al. Study on the chemical constituents of Carthamus tinctorius[J]. Chin Trad Pat Med, 2021, 43(8): 2253-2255.
冯丹萍, 段宝忠, 夏从龙, 等. 红花化学成分的研究[J]. 中成药, 2021, 43(8): 2253-2255. DOI:10.3969/j.issn.1001-1528.2021.08.051
[29]
LEE H S, JEONG G S. Aromadendrin inhibits T cell activation via regulation of calcium influx and NFAT activity[J]. Molecules, 2020, 25(19): 4590. DOI:10.3390/molecules25194590
[30]
ELGHONDAKLY M, MOAWAD A, HETTA M. Cytotoxicity and chromatographic analysis of Dioon spinulosum, family Zamiaceae[J]. J Appl Pharm Sci, 2020, 10(12): 75-82. DOI:10.7324/JAPS.2020.101210
[31]
WU Z X, JANG S N, PARK S Y, et al. Inhibitory potential of bilobetin against CYP2J2 activities in human liver microsomes[J]. Mass Spectrom Lett, 2020, 11(4): 113-117. DOI:10.5478/MSL.2020.11.4.113
[32]
LEI X Q, CHEN A, LIU Y, et al. Research advances on pharmaco-logical effect of kaempferol[J]. Stu Tra Elem Heal, 2017, 34(2): 61-62.
雷晓青, 陈鳌, 刘毅, 等. 山萘酚药理作用的研究进展[J]. 微量元素与健康研究, 2017, 34(2): 61-62.