文章快速检索     高级检索
  热带亚热带植物学报  2022, Vol. 30 Issue (6): 823-834  DOI: 10.11926/jtsb.4711
0

引用本文  

吴春婷, 范甜, 吕天晓, 等. 钙调素结合蛋白参与调控植物逆境胁迫的研究进展[J]. 热带亚热带植物学报, 2022, 30(6): 823-834. DOI: 10.11926/jtsb.4711.
WU Chunting, FAN Tian, LÜ Tianxiao, et al. Recent Advances in Calmodulin Binding Protein Involved in Plant Responses to Adversity Stresses[J]. Journal of Tropical and Subtropical Botany, 2022, 30(6): 823-834. DOI: 10.11926/jtsb.4711.

基金项目

广东省自然科学基金项目(2020A1515011423)资助

通信作者

田长恩, E-mail: changentian@aliyun.com

作者简介

吴春婷(1999生),女,硕士,主要从事植物分子遗传学研究。E-mail: 1977027331@qq.com

文章历史

收稿日期:2022-08-03
接受日期:2022-08-22
钙调素结合蛋白参与调控植物逆境胁迫的研究进展
吴春婷 , 范甜 , 吕天晓 , 周玉萍 , 田长恩     
广州大学生命科学学院, 广东省植物适应性与分子设计重点实验室, 广州 510006
摘要:Ca2+是植物体内重要的第二信使,当植物受到各种环境刺激时,细胞内的Ca2+浓度瞬间产生变化,并被Ca2+信号效应器识别,通过与下游的靶蛋白结合并调节其活性,参与调控植物各种生理活动。钙调素结合蛋白以依赖Ca2+或不依赖Ca2+的方式结合钙调素。对目前已经鉴定的植物钙调素结合蛋白结构特点进行了综述,并着重介绍了钙调素结合蛋白是如何参与调节植物对生物胁迫和非生物胁迫的反应,为提高作物抗病抗逆能力研究提供理论基础。
关键词钙调素结合蛋白    逆境胁迫    植物钙调素    
Recent Advances in Calmodulin Binding Protein Involved in Plant Responses to Adversity Stresses
WU Chunting , FAN Tian , LÜ Tianxiao , ZHOU Yuping , TIAN Chang’en     
Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
Foundation item: This work was supported by the Project for Natural Science in Guangdong (Grant No. 2020A1515011423)
Abstract: Calcium (Ca2+) is an important second messenger in plants. The intracellular concentration of Ca2+ is often elevated instantaneously under various kinds of biotic and abiotic stresses, and which is recognized by Ca2+ signal effectors. By binding to downstream target proteins and regulating their activities, Ca2+ participates in the regulation of various physiological activities of plants. Calmodulin binding proteins bind calmodulin in a Ca2+-dependent or Ca2+-independent manner. The structure characteristics of calmodulin binding proteins identified in plants were reviewed, and emphasizing on how calmodulin binding proteins are involved in regulating plant responses to biotic and abiotic stresses was focused, which would provide a theoretical basis for study of improve disease-tolerance and stress-tolerance of crops.
Key words: Calmodulin binding protein    Adversity stress    Plant calmodulin    

干旱、低温、盐、重金属离子和病原菌等胁迫条件对植物的生长发育有严重影响,而植物体也具有一系列迅速感知并对逆境胁迫进行防御应答的信号转导机制[1]。Ca2+作为植物体内广泛存在的第二信使,在植物感受到外界刺激时会短暂提高胞质的Ca2+浓度,从而形成钙信号,不同刺激造成的Ca2+浓度的变化时间、频率和幅度均不相同[1]。在不同的逆境胁迫下,植物细胞通过Ca2+内流产生钙信号,在完成信号传递功能后,胞质内的Ca2+会被H+/Ca2+酶和Ca2+-ATP酶重新转运回到钙库,从而终结胁迫信号的传导[1]。Ca2+效应器主要有3种: 钙调素(calmodulin, CaM)及其类似蛋白(calmodulin-like protein, CML)、钙依赖型蛋白激酶(Ca2+ dependent protein kinases, CDPK)、钙调磷酸酶B样蛋白(complexes of calcineurin-B-like proteins, CBL)[2]。CaM/CML是Ca2+浓度波动的主要感受器,由于其本身并没有催化活性,只能通过与下游的钙调素结合蛋白(calmodulin binding proteins, CaMBPs)互相作用并调节其活性来发挥功能[2]。本文主要介绍CaM/CML的下游结合蛋白在植物胁迫信号响应中的作用。

1 钙调素与其结合蛋白的结构特点与种类

CaM是一种广泛存在于植物中的钙结合蛋白,具有多种亚型,其氨基酸序列两端各含有1对能与Ca2+结合的EF-hand结构,中间以螺旋管结构相连[3]。1个CaM蛋白可以与4个Ca2+结合,形成复合物后CaM构象会发生显著变化,EF-hand螺旋间的相对方向发生变化,使一些疏水残基暴露于CaM表面以增大暴露面积,形成容易与靶蛋白结合的疏水表面和疏水穴[3]。而没有Ca2+结合的CaM称为ApoCaM,可以在低浓度或者缺乏Ca2+的条件下与靶蛋白结合并发挥活性,与Ca2+/CaM复合物的构象变化相比,ApoCaM在N端始终关闭的情况下, C端则保持半开和关闭的动态变化,从而保证在没有Ca2+的情况下也能与靶蛋白结合[3]。在拟南芥(Arabidopsis thaliana)中有7个基因(CaM1~CaM7)编码4种CaM亚型,分别为CaM1/CaM4、CaM2/CaM3/CaM5、CaM6和CaM7;除此之外,还发现了50个编码CML的基因,其中CaM7具有转录活性, 其余的CaM/CML均要与下游靶蛋白结合才能发挥功能[4]

CaMBPs是指能与CaM/CML结合的蛋白,包括在体外或体内能和CaM/CML结合的蛋白以及各种受CaM/CML调控的酶类[4],CaMBPs通过CaM结合结构域(CaM-bingding domain, CaMBD)与CaM结合。IQ基序是第1个发现的不依赖Ca2+的CaMBD,1-5-10基序和1-8-14基序是依赖于Ca2+的结合结构域,故通过与CaM结合方式的不同将CaMBPs分为Ca2+依赖型和Ca2+不依赖型[5]。Ca2+依赖型CaMBPs主要包括CBP60s (calmodulin-binding protein 60s)、MLO (mildew resistance locus Os)、MKPs (mitogenactivated protein kinase phosphatases)及其他与CaM/CML结合的转录因子和转运蛋白等;而Ca2+不依赖型CaMBPs在植物中主要是指含有IQ基序的蛋白,主要包括myosins、CAMTAs (calmodulin-binding transcription activators)、CNGCs (cyclic nucleotidegated channels)、IQDs (IQ67-domain containing proteins)和IQMs (IQ-motif containing proteins)[2]

已经在植物中鉴定出许多种类的CaMBPs,功能已经明确的超过50个,主要种类包括代谢酶类、转录因子、离子通道等[2], 不仅参与调控植物的多种生理过程,还参与植物胁迫防御反应调控过程。研究表明CaMBPs的表达可以被各种非生物胁迫(高温、干旱、和寒冷等)、生物胁迫(各种病原菌和食草性昆虫)和水杨酸(salicylic acid, SA)、乙烯和茉莉酸(jasmonic acid,JA)等激素诱导,调节下游靶基因并参与激素信号、离子运输、基因转录等途径,从而对植物的抗逆响应起到关键的调控作用[611]

2 Ca2+依赖型的钙调素结合蛋白参与调控植物胁迫响应 2.1 钙调素结合蛋白60 (CBP60)家族

CBP60s是植物中特有的可以结合CaM的转录因子家族,在拟南芥筛选CaMBP中最早被发现[12]。拟南芥中该家族有8个成员(CBP60a~CBP60g和SARD1),均含有1个CaMBD,大多数位于C端, 只有CBP60g的CaMBD位于N端附近,但SARD1的CaMBD突变,不能与CaM结合[12]

CBP60s在植物的免疫响应中具有重要作用, CBP60g主要通过调控异分支酸合酶1 (isochorismate synthase 1, ICS1)来调节受到病原菌侵害的植物中产生SA,从而引起植物的防御反应[8,12]。研究表明CBP60g是植物免疫的正调节因子,CBP60g过表达促进拟南芥SA的积累,同时诱导病程相关(pathosenesis-related, PR)基因和ICS1基因的表达,从而提高了对丁香假单胞菌(Pseudomonas syringae)的抗病性[8],而cbp60g突变增强了拟南芥对丁香假单胞菌的敏感性,降低了植物体内的SA水平[12]。CBP60b 可以直接激活CBP60gSARD1的转录, cbp60b的突变会使拟南芥植株SA含量升高,从而增加了植物抗病性[14]。除了参与调控植物对丁香假单胞菌的抵抗力,大丽轮枝菌(Verticillium dahliae)的分泌蛋白VdSCP41可以直接靶向结合拟南芥CBP60g、SARD1和棉花(Gossypium hirsutum)的GhCBP60b, 抑制转录因子活性,从而降低植物抗病性[15]

与CBP60b/CBP60g不同,该家族的另1个成员CBP60a被认为是一个免疫抑制因子,其突变会导致病原菌生长减慢,CBP60a能够与CML46、CML47结合,抑制SA在被病原菌感染的拟南芥中的积累,表明SA依赖的钙调素信号在植物免疫中具有一个复杂的模式[16]

除了应对各种病原菌的侵袭,CBP60家族同时也参与调节植物的多种非生物胁迫,对拟南芥进行热激处理后,AtCBP60g过表达的植株表现对高温胁迫更为敏感的表型,其比野生型更为矮小,出现黄化现象[13]。而在干旱胁迫下,AtCBP60g过表达还可以提高ICS1基因的表达量,增强了对干旱的耐受能力[8]

2.2 白粉病抗性基因(MLO)家族

MLO是一类植物特有的抗病蛋白,在C末端存在CaMBD,可以在Ca2+存在下与CaM形成复合物[17]。该家族中大多数成员作为白粉病的感病因子,均会降低植物对白粉病的抵抗力,MLO蛋白作为白粉病菌入侵植物体所必需的条件[18],当特定的mlo基因的缺失突变,MLO蛋白失去负调控白粉菌抗性的功能,使烟草(Nicotiana tabacum)[18]、大麦(Hordeum vulgare)[19]和番茄(Lycopersicon esculentum)[20]等植物引发对白粉病的广谱抗性。

MLO基因最初在大麦中发现,当大麦受到白粉菌侵染时,CaM可以通过与MLO蛋白相互作用从而抑制植物的防御反应[19]。在辣椒(Capsicum annuum)中,CaMLO2和CaCaM1特异性结合可以抑制由辣椒疮痂病菌(Xanthomonas campestris pv. vesicatoria)引起的细胞死亡和植物免疫防御,而沉默CaMLO2基因的表达会增加植物体内活性氧(reactive oxygen species, ROS)的含量以及增强抗病性[21], 过表达CaMLO2会增强拟南芥对丁香假单胞菌和对卵菌病原灰霉病(Hyaloperonospora arabidopsidis)的敏感性[22], 同时可以恢复番茄突变体对白粉菌的敏感性[20]CsMLO1CsCaM3的过表达均降低了黄瓜(Cucumis sativus)子叶对棒孢叶斑病菌(Corynespora cassiicola)的抗性和防御相关基因的表达,证明CsMLO1与CsCaM3的相互作用能够负调控黄瓜的抗病防御反应[23]

MLO蛋白不仅可以负调控植物对病原体感染的防御反应,在植物响应干旱胁迫的应答中也有重要作用。有研究表明,干旱处理12 d后,沉默CaMLO2基因的辣椒叶片组织鲜重损失较小,丙二醛含量降低,而过表达CaMLO2基因的拟南芥植株,干旱胁迫12 d后的地上部分生物量的相对减少量显著高于野生型,证明CaMLO2作为ABA的负调控因子参与调控了植物的抗旱性[24]

2.3 MAPK磷酸酶(MKP)家族

丝裂原活化蛋白激酶(mitogen-activated protein kinases, MAPKs)是一类保守的丝氨酸/苏氨酸蛋白激酶,广泛参与植物对各种生物和非生物胁迫的响应,如重金属、低温和盐等[25]。MAPK磷酸酶(MAPK phosphatases, MKPs)是MAPK信号途径重要的负调控因子,作为一种双特异性磷酸酶,对丝氨酸/苏氨酸和酪氨酸残基去磷酸化使MAPKs失活,从而使MAPKs的信号传导可以受到严格的调控[26]。在拟南芥基因组中,只鉴定到5种MKPs,包括AtMKP1、PHS1、IBR5、MKP2和DsPTP1,其中CaM结合型MAPK磷酸酶MKP1和DsPTP1可以在Ca2+存在下和CaM结合,从而调节其活性,在生物和非生物胁迫过程中均有重要作用[2728]

烟草NtMKP1是最早被鉴定可以与CaM (NtCaM1, NtCaM3和NtCaM13)结合的MAPK磷酸酶,NtMKP1过表达会抑制伤口诱导的蛋白激酶(woundinduced protein kinase, WIPK)和SA诱导的蛋白激酶(salicylic acid-induced protein kinase, SIPK)的表达[26]NtMKP1表达被抑制的转基因烟草NtMKP1-AS植株中SIPKWIPK表达增强,且在接种灰霉菌(Botrytis cinerea)后的烟草叶片坏死率显著小于对照,同时也降低了甘蓝夜蛾(Mamestra brassicae)和夜蛾(Spodoptera litura)在烟草叶片上的存活率[10], 证明NtMKP1作为一种负调控因子参与调控植物的损伤反应和对病虫害的抗性[10,26]

TMKP1是目前唯一被鉴定到的小麦(Triticum aestivum) MAPK磷酸酶,参与调节小麦对盐胁迫和渗透胁迫的响应[29]TMKP1在拟南芥中异源表达可以提高盐胁迫下种子发芽率和幼苗的抗氧化活性[30]

在拟南芥中,CaM通过2个CaMBD与AtMKP1结合并调节其活性[27]atmkp突变及其磷酸酶活性的缺失提高了植物耐盐性,提示MKP1在渗透调节中具有关键作用[31]。而在植物免疫反应中,AtMKP1作为负调控因子调控ROS的产生和植物对不同病原体的敏感性[32]。AtDsPTP1作为1个CaM结合型的双特异性磷酸酶,与CaM2的结合仅会调节其对酪氨酸的去磷酸化活性[28]。在atdsptp1突变体中, 脯氨酸含量和渗透应答基因表达均显著增加,用甘露醇处理后,atdsptp1突变的种子也较野生型有更高的发芽率[33]

2.4 其他Ca2+依赖型的钙调素结合蛋白

除以上3个依赖Ca2+的CaMBP家族外,植物中,还有一些依赖Ca2+的CaMBPs作为酶、转录因子和转运蛋白等在植物的胁迫响应中起重要作用。

酶参与调节植物体内生长发育过程中的各种生理活动,而一些酶类可以结合CaM在植物响应逆境胁迫中发挥重要作用[34]。AtPP7是植物中最先发现的CaM结合型丝氨酸/苏氨酸蛋白磷酸酶, atpp7缺失突变体降低了拟南芥幼苗的耐热性[35]。龙须菜(Gracilaria lemaneiformis)的肌醇-1-磷酸合酶(myoinositol-1-phosphate synthase, MIPS)也是一种CaMBP, 可参与响应植物的高温胁迫[36]

CaM结合型激酶在逆境响应中同样发挥重要作用,AtCBK3是拟南芥中的一种CaM结合型激酶, 可以促进AtHSFA1a的磷酸化和激活HSFs (heat-shock transcription factors)与HSEs (heat-shock elements)的结合,从而正向调节拟南芥的热休克反应[37]。CRLK1是一种CaM结合型类受体蛋白激酶,正常生长条件下,crlk1突变体与野生型并无特别表型差异,但处于低温条件中,crlk1突变体表现出更高的敏感性[9]。OsDMI3是一种Ca2+/CaM依赖性蛋白激酶(Ca2+/CaM-dependent protein kinase, CCaMK),作为ABA信号传导的正调节因子,在盐胁迫下,可以正向调控水稻根系对盐的耐受性以及侧根的生长[3839]

CaM除了可以调节酶的活性之外,还能够与转录因子相互作用[2]。MYB2是最大的植物转录因子MYB (v-myb avian myeloblastosis viral oncogene homolog)家族成员之一,GmCaM4通过结合AtMYB2增强AtMYB2的DNA结合活性,过表达GmCaM4增加了脯氨酸的积累,从而增强植物的耐盐性[40]。在GTL (GT-2 LIKE)转录因子家族中, AtGTL1能与CaM结合,是植物抗旱性的负调节因子,gtl1可以在干旱胁迫下保持更高的存活率[41];同样地,从杨树(Populus sp.)中鉴定的PtaGTL1也能与CaM结合,在干旱胁迫下可以调节水分利用率和增强植物的耐旱性[42]。在拟南芥中,另一种转录因子AtABF2/AREB1也被鉴定为CaMBP,可以正向调控植物的抗旱性,其突变体atabf2在干旱胁迫下成活率明显降低[43]

WRKY家族中的WRKY7/WRKY11/WRKY17都能与CaM互作[44],作为拟南芥病原菌相关分子模式(pathogen-associated molecular patterns, PAMP)触发免疫的调节因子,参与调控植物对丁香假单胞菌的抗性[45]。AtTGA3是第1个被发现能与CaM结合的碱性亮氨酸拉链(basic leucine zipper, bZIP)类型的转录因子, 其突变体attga3会增加拟南芥对丁香假单胞菌的敏感性[46]

除此之外,CaM还可将Ca2+传递到与其结合的转运蛋白,从而对跨膜运输进行调节,在拟南芥的P2A型钙离子ATP转运蛋白(autoinhibited Ca2+-ATPase, ACA)家族中,ACA2/ACA4/ACA8/ACA11均被鉴定为CaMBP[34,47], aca4/aca11突变激活了由SA诱导的细胞程序性死亡,而aca8及其同源物aca10突变则会增加植物对病菌的敏感性[48],同时aca8aca10双突变体会减少由细菌鞭毛蛋白flg22诱导的ROS和钙离子的爆发,提示ACA4/ACA8/ACA11均参与调节植物的免疫应答[4849]。PEN3是PDR (pleiotropic drug resistance)型ABC (ATP-binding cassette)转运蛋白家族成员,可以与CaM7结合, 调节拟南芥对病原菌的免疫响应,但具体机制有待进一步研究[50]。在拟南芥中的Na+/H+逆向转运蛋白(Na+/H+ antiporter, NHX) AtNHX1能与CML18互作,AtNHX1过表达可以降低拟南芥对盐胁迫的敏感性[5152]

3 Ca2+不依赖型的钙调素结合蛋白参与调控植物生物与非生物胁迫 3.1 钙调素结合转录激活因子(CAMTA/SR)家族

CAMTAs是受CaM调控的一类转录因子,由于可以响应多种信号分子,所以也称为SRs (signalresponsive genes)[53]。CAMTAs最早在烟草幼苗中作为CaMBP被分离出来[54]。在拟南芥[53]、番茄[55]和水稻[56]中分别鉴定出CAMTA/SR家族成员16、7和7个。在真核生物中,该家族的功能结构域较为保守,均含有CG-1结构域、TIG结构域、ANK重复结构域、1个Ca2+依赖型CaMBD和串联重复的IQ基序[56]。2个CaMBD的存在提示不同物种的CAMTA/SR蛋白结合CaM的方式可能存在不同, 例如拟南芥CAMTA1和番茄CAMTA与CaM结合均依赖Ca2+[53,55],而水稻的OsCBT中, 在Ca2+缺乏时可以通过IQ基序与CaM结合, 在Ca2+存在时通过另一个Ca2+依赖型CaMBD与CaM结合[56]。小麦的TaCAMTA4也被证明以依赖Ca2+的方式结合CaM[57]

在大多数植物中,CAMTAs参与调节植物对不同病虫害的防御反应。拟南芥CAMTA3/SR1被证明是植物免疫响应的负调控因子,有研究表明, CAMTA3/SR1可以通过识别和结合与抗病有关的靶基因EDS1NDR1EIN3的启动子区域,抑制其表达来参与SA和乙烯反应通路,从而负调控植物对丁香假单胞菌、白粉病菌和灰霉菌的抗性[5859]。拟南芥camta3-1、camta3-2在正常情况下出现严重的病变表型,且该突变会导致植物体内SA的积累[58,60];在拟南芥camta3突变植株中接种稻黄单胞菌(Xanthomonas oryzae pv. oryzae)后,提高了植物体内由PAMP诱导的H2O2和ROS含量,且增强了病原体诱导的超敏反应[61]。同时在接种核盘菌(Sclerotinia sclerotiorum)后,突变体植株中AtJIN1基因的表达显著增强,推测AtCAMTA3也可能通过直接靶向JIN1来调节JA信号通路,从而负调节对核盘菌的抗性[62]。AtCAMTA3在水稻中的同源蛋白OsCBT也是植物防卫反应的负调控因子,oscbt突变体会增强水稻对稻黄单胞菌和稻瘟菌(Magnaporthe grisea)的抵抗力[56]。利用VIGS技术沉默小麦和番茄的CAMTA基因,结果表明小麦的TaCAMTA4和番茄的SlSR1、SlSR3L也发挥负调控抗病响应的功能[57,63]

除了参与调控植物对病菌体的防御反应,CAMTA3作为正调控因子与CaM结合参与调节植物对食草性昆虫的防卫反应[6465]。JA是植物体内的一种重要的信号分子,JA介导的信号传导通路促进植物对食草昆虫的抵抗,虫咬会导致植物体内JA含量的增加,而sr1突变体经虫咬后体内的SA含量增加而JA水平降低[65]sr1突变均降低了拟南芥对食草昆虫真菌蚊(Bradysia impatiens)和粉纹夜蛾(Trichoplusia ni)的抗性[64]

CAMTA3不仅参与调控植物的抗病虫害反应,在植物响应盐胁迫中也起到负调节的作用。当用100、150 mmol/L的NaCl处理camta3突变体时,2个突变体sr1-1sr1-2均表现出了对盐胁迫的耐受性[66]。在种子萌发过程中,另一个耐盐性的负调控因子CAMTA6/SR3直接或间接调控了大多数与盐胁迫有关的基因的表达,且其突变体camta6-4camta6-5在盐胁迫下的发芽率也高于野生型[67]。在干旱条件下,相比于野生型,拟南芥camta1突变体表现出了生长缓慢,光合作用效率和水分利用率均降低等对干旱高敏感性的表型[68]。番茄的SlSR1L可能调控大量干旱胁迫应答基因的表达,沉默SlSR1L的番茄植株对干旱的耐受性下降[63]。最近, CAMTA3也被证明可以正调控植物对干旱胁迫的应答,sr1-1sr1-2缺失突变体对干旱的敏感性高于野生型,过表达的SR1株系SR1OX-4和SR1OX-5在停止14 d的干旱胁迫,复水后的存活率也高于野生型[11]。在拟南芥中,CBF寒冷响应途径被证明可以调节植物对低温的耐受性,而CAMTA3是CBF2表达的正调控因子,但camta3单突变体的耐冻性无显著变化,而camta3camta1双突变体对低温的抗性显著降低,证明拟南芥的耐冷性依赖于CAMTA3和CAMTA1的共同作用[69]

3.2 IQ67结构域(IQD)家族

IQD家族是植物特有的CaMBP家族,最早在水稻和拟南芥中发现[70],分别有29和33个同源基因。该家族成员的特征是均含有1个由67个氨基酸残基组成的结构域,也称为IQ67结构域[70]。该结构域不仅含有1个IQ基序,还具有2个Ca2+依赖型的1-5-10基序和1-8-14基序[70]。故不同IQD结合CaM的方式有所不同,AtIQD1与CaM的结合依赖Ca2+[71],而AtIQD20和AtIQD26与CaM的结合均不依赖Ca2+[72]

硫代葡萄糖苷是一种参与调控植物防御反应的次生代谢物,拟南芥IQD1可以调控多种硫代葡萄糖苷代谢基因的表达,作为正调控因子增加植物体内硫代葡萄糖苷的积累,从而促进植物对食草性昆虫的抗性[71]。最近研究表明,拟南芥IQD1还参与了调控植物对病原菌的抗性,iqd1-1对灰霉菌的敏感性增加而超表达的植株对灰霉菌的抵抗性增加[73]

在陆地棉(Gossypium hirsutum) GhIQD31GhIQD32基因敲除植株中,抗氧化物酶SOD、CAT活性降低,从而提高了陆地棉对干旱和盐胁迫的敏感性[74]。在大白菜(Brassica rapa var. glabra)中,利用VIGS技术沉默BrIQD5基因,正常情况下的表型与野生型一样,但干旱处理10 d后,沉默BrIQD5的植株出现了更严重的黄化和枯萎现象[75]。而在烟草瞬时超表达BrIQD5BrIQD35植株均提高了对干旱的耐受性[7576]

3.3 IQ基序(IQM)家族

在拟南芥IQM家族中共有6个成员(IQM1~ IQM6),N-端具有一段与豌豆重金属诱导蛋白6A (pea heavy-metal induced protein 6A, PHMIP 6A)同源性较高的序列,C-端与天花粉素具有较高的同源性, 每个成员均含有1个IQ基序,与CaM的结合不依赖Ca2+[77]。而IQM1和IQM4的IQ基序发生突变后,均不能与CaM结合[7778]。同样地,水稻中的8个IQM家族成员也均是通过IQ基序结合OsCaM1,缺失则不能结合[79], 证明IQ基序是IQM家族成员与CaM结合所必需的。

有研究表明,AtIQM1可以直接结合CATALASE2 (CAT2)并促进其表达,从而提高CAT2活性和间接提高与JA途径相关的ACX2和ACX3活性, 提高JA的含量。并且当IQM1与CaM5结合后,CAT2活性会被进一步升高, 证明IQM1是在CaM介导下通过与CAT2的结合激活JA介导的植物病害反应信号传导途径,从而提高拟南芥对灰霉菌的抗性[80]。棉花中的IQM1在植物抗病性上表现出了相反的作用,接种黄萎病菌“V991”后20 d,GhIQM1沉默的植株出现叶片坏死黄化等表型显著轻于野生型[81],与SA途径有关的NPR1NPR3PR5的表达量均提高,而与JA途径有关的后AOCAOSPDF1.2表达均下降,证明GhIQM1基因通过激活JA信号途径同时负调控SA信号和棉花对黄痿病的抗性[81]

在拟南芥中,IQM4被证明可以调节植物对非生物胁迫的响应,iqm4在种子萌发和幼苗生长过程中均表现出ABA不敏感和盐超敏感表型,而IQM4过表达株系则表现出ABA和渗透超敏感和盐不敏感表型[78]

3.4 环核苷酸门控通道(CNGC)家族

CNGCs是一种由4个亚基组成的非选择性阳离子通道,首个报道的CNGC基因是在大麦的糊粉蛋白cDNA表达文库中筛选CaM结合转运蛋白中鉴定出来的[82]。在拟南芥[83]、小麦[84]和大白菜[85]等植物也报道了CNGC的同源序列。从结构来看, CNGC含有6个ɑ-螺旋的跨膜结构域(S1~S6),其中S5和S6间存在1个负责离子选择性过滤的P结构域(P loop), CaMBD位于CNGCs的C端,与位于C末端的环核苷酸结合结构域(CNBD)有部分重叠[85]。此外,植物中的CNGCs还存在1个IQ基序,部分AtCNGCs通过IQ基序与CaM结合,如AtCNGC12的N端还存在1个CaMBD[83],证明CaM对CNGCs调控可能存在多种方式。

当病原体入侵植物细胞时会引起细胞胞质内Ca2+浓度的改变,而CNGC作为细胞信号转导级联系统的组分,一方面可以通过与环核苷酸结合参与调控激活Ca2+的内流,另一方面其通道活性被增多的Ca2+/CaM反馈抑制,从而抑制Ca2+的内流[86]。同时植物在防御病原体侵染时会产生超敏反应,使被感染的细胞死亡, 从而阻止病原体在植物体内继续扩散。cngc2cngc4均产生了组成型激活自身免疫反应,与野生型相比,体内的SA含量提高, PR的组成型表达,均提高了拟南芥对病原菌的抗性[97]ATCNGC11ATCNGC12的缺失导致拟南芥对灰霉菌和丁香假单胞杆菌无毒株系抵抗力降低,而由这2个基因融合而成的功能突变体cpr22 (constitutive expresser of PR gene 22)可以组成型表达PR基因, 且表型与cngc2cngc4一致,不同的是cpr22可以引发Ca2+依赖的超敏反应,且ATCNGC12过表达可以抑制该组成型免疫表型的产生[8889]。而进一步研究表明CaM1发挥功能依赖的是CNGC12钙通道活性的激活而并非是CNGC11[90]ngc20-4可以增强植物的ETI效应子触发免疫(effector-triggered immunity)和PTI (PAMP-triggered immunity)反应, 同时该单突变体也出现了自身免疫,但与cngc2的生长缺陷不一样,提示两者可能以不同方式调控Ca2+[91]。这证明CNGCs可以参与调控植物的免疫防御反应。

此外,CNGCs还涉及调控植物对食草性昆虫的抗性。AtCNGC19参与调控植物识别食草夜蛾并激活由其诱导产生的Ca2+内流,atcngc19中Ca2+内流减弱, 茉莉酰基异亮氨酸含量、JA响应基因的表达量和硫代葡萄糖苷积累量均降低,从而降低了拟南芥对食草性昆虫的抗性。CaM2作为植物抗虫害的正调节因子,CNGC19可以与其结合从而调控细胞内Ca2+浓度,并将其与下游防御信号耦合[92]

拟南芥CNGC2及其在小立碗藓(Physcomitrella patens)的同源蛋白PaCNGCb被认为是陆地植物的热传感器,两者的缺失均会使植株产生超热敏表型,PaCNGCb的缺失导致植物体内Ca2+内流,产生热休克反应[93]cngc2-1和cngc2-2的耐热性增强, 幼苗中抗坏血酸过氧化物酶和热休克蛋白等热响应蛋白的积累增加[94]。而AtCNGC10、AtCNGC19AtCNGC20都被证明参与调节拟南芥对盐胁迫的响应,在NaCl处理下,atcngc10突变增强了种子萌发和幼苗时期的拟南芥耐盐性[95]AtCNGC19AtCNGC20在地上部的表达增强,cngc19cngc20突变体植株和愈伤组织生长较迟缓,而过表达的AtCNGC19AtCNGC20使植株和愈伤组织出现对盐的耐受性[9697]

3.5 肌球蛋白(Myosin)家族

肌球蛋白Myosins是个十分庞大的家族,可分成37类,与其他真核生物相比,在植物中的数量较少,只鉴定出VIII和XI两类植物特异性的肌球蛋白[98]。肌球蛋白的结构较为保守,由头、颈和尾三部分组成,颈部含有2条轻链,其中包含1~6个IQ基序[100]。肌球蛋白作为一种分子马达,能将ATP水解产生的化学能转化为供生命活动所需的机械能,并能够沿着肌动蛋白丝运动。其已被报道的主要功能包括在细胞器运动、有丝分裂以及胞间连丝等起到重要作用[98],其成员在植物抗逆方面的研究较少。拟南芥Myosins XI共有13个成员(XI-1、XI-2、XI-A~XI-K),其中XI-2、XI-B和XI-F的IQ基序可以轻链的形式与CaM结合[99]。在病原体感染反应中,5个肌球蛋白XI基因(XI-1、XI-2、XI-H、XI-IXI-K)在叶片的表达量较高,进一步构建单突和多突变体验证试验证明,四突变体xi-1、xi-2、xi-i、xi-k植株对渗透胁迫具有较高的抗性,用真菌病原体炭疽菌(Colletotrichum destructivum)侵染后,与野生型相比,四突变体植株的叶片出现了大量孢子萌发和菌丝的形成,表现出对病原体完全敏感的表型。提示拟南芥Myosins XI是提高植物抗病性的关键调控因子[100]

3.6 其他Ca2+不依赖型的钙调素结合蛋白

拟南芥中的AtBAG6含有1个BAG (BCL-2-associated athanogene)结构域与IQ基序,与CaM结合不依赖游离的Ca2+。编码该蛋白的基因转录是由SA、H2O2和高温特异性诱导。过表达AtBAG6基因会使酵母和植物细胞产生类似于超敏反应的程序性死亡,且IQ基序是该蛋白诱导酵母细胞死亡所必需的,证明AtBAG6是一个参与调控植物抗逆和细胞程序性死亡的CaMBP[13]

4 展望

CaM/CML是目前研究最广泛的Ca2+效应器之一,它能够通过与下游CaMBPs相互作用来参与调控植物的各种生理活动,尤其是在对逆境胁迫的响应中发挥重要功能。尽管目前已经鉴定了大量参与植物逆境响应的CaMBP,但仍存在一些有待解决的问题。首先,鉴定新的CaMBP是当前最重要的任务之一,不仅包括经典的CaM靶蛋白,还有目前研究较少的CML家族调控的靶蛋白。综合应用多种方法对CaMBP进行筛选将会扩展对植物Ca2+信号调控网络的认识;其次,需要确定CaMBP在参与调节下游信号转导途径时是否受到了CaM/CML的调控,在植物抗逆过程中,CAMTA3、CBP60b和CBP60g等CaMBPs与CaM的结合是它们发挥调控免疫功能所必需的,其他的CaMBPs在植物免疫中的作用是否同样也依赖于CaM有待进一步研究; 第三,需要了解CaM/CML及其相对应的CaMBPs调节植物抗逆的复杂性,如CAMTA3、CBP60b和CNGCs等家族成员在调控植物抗逆中被证明不只是单个CaMBP发挥作用,而是家族成员之间存在拮抗作用或者形成复合物从而共同调节, 且不同家族成员之间,例如在拟南芥响应病原菌时CAMTA3对CBP60g和S4RD1存在抑制作用,提示CaMBPs之间的作用也有利于完善对植物响应抗逆机制的研究。虽然目前已经研究了部分CaMBPs参与调控特定植物的抗逆反应,但将这些CaMBPs用于培育抗逆作物的工作才刚刚开始,因此可利用分子标记辅助育种、基因编辑等技术将现有研究成果应用到作物栽培中,从而获得各种抗逆的品种。

参考文献
[1]
XIONG L M, SCHUMAKER K S, ZHU J K. Cell signaling during cold, drought, and salt stress[J]. Plant Cell, 2002, 14(S1): S165-S183. DOI:10.1105/tpc.000596
[2]
ZENG H Q, XU L Q, SINGH A, et al. Involvement of calmodulin and calmodulin-like proteins in plant responses to abiotic stresses[J]. Front Plant Sci, 2015, 6: 600. DOI:10.3389/fpls.2015.00600
[3]
FENG Y D, WEI Q. Diversity of the modes for calmodulin binding to its targets[J]. Prog Chem, 2012, 24(10): 2028-2039.
冯业丹, 魏群. 钙调素与靶蛋白结合模式的多样性[J]. 化学进展, 2012, 24(10): 2028-2039.
[4]
MCCORMACK E, BRAAM J. Calmodulins and related potential calcium sensors of Arabidopsis[J]. New Phytol, 2003, 159(3): 585-598. DOI:10.1046/j.1469-8137.2003.00845.x
[5]
O’DAY D H. CaMBOT: Profiling and characterizing calmodulinbinding proteins[J]. Cell Sign, 2003, 15(4): 347-354. DOI:10.1016/S0898-6568(02)00116-X
[6]
CONSONNI C, HUMPHRY M E, HARTMANN H A, et al. Conserved requirement for a plant host cell protein in powdery mildew pathogenesis[J]. Nat Genet, 2006, 38(6): 716-720. DOI:10.1038/ng1806
[7]
KANG C H, JUNG W Y, KANG Y H, et al. AtBAG6, a novel calmodulin-binding protein, induces programmed cell death in yeast and plants[J]. Cell Death Differ, 2006, 13(1): 84-95. DOI:10.1038/sj.cdd.4401712
[8]
WAN D L, LI R L, ZOU B, et al. Calmodulin-binding protein CBP60g is a positive regulator of both disease resistance and drought tolerance in Arabidopsis[J]. Plant Cell Rep, 2012, 31(7): 1269-1281. DOI:10.1007/s00299-012-1247-7
[9]
YANG T B, CHAUDHURI S, YANG L H, et al. A calcium/calmodulin-regulated member of the receptor-like kinase family confers cold tolerance in plants[J]. J Biol Chem, 2010, 285(10): 7119-7126. DOI:10.1074/jbc.M109.035659
[10]
OKA K, AMANO Y, KATOU S, et al. Tobacco MAP kinase phosphatase (NtMKP1) negatively regulates wound response and induced resistance against necrotrophic pathogens and lepidopteran herbivores[J]. Mol Plant Microbe Interact, 2013, 26(6): 668-675. DOI:10.1094/Mpmi-11-12-0272-R
[11]
ZENG H Q, WU H C, WANG G P, et al. Arabidopsis CAMTA3/SR1 is involved in drought stress tolerance and ABA signaling[J]. Plant Sci, 2022, 319: 111250. DOI:10.1016/j.plantsci.2022.111250
[12]
WANG L, TSUDA K, TRUMAN W, et al. CBP60g and SARD1 play partially redundant critical roles in salicylic acid signaling[J]. Plant J, 2011, 67(6): 1029-1041. DOI:10.1111/j.1365-313X.2011.04655.x
[13]
ZHANG Y X, XU S H, DING P T, et al. Control of salicylic acid synthesis and systemic acquired resistance by two members of a plantspecific family of transcription factors[J]. Proc Natl Acad Sci USA, 2010, 107(42): 18220-18225. DOI:10.1073/pnas.1005225107
[14]
LI L S, YING J, LI E, et al. Arabidopsis CBP60b is a central transcriptional activator of immunity[J]. Plant Physiol, 2021, 186(3): 1645-1659. DOI:10.1093/plphys/kiab164
[15]
QIN J, WANG K L, SUN L F, et al. The plant-specific transcription factors CBP60g and SARD1 are targeted by a Verticillium secretory protein VdSCP41 to modulate immunity[J]. eLife, 2018, 7: e34902. DOI:10.7554/eLife.34902
[16]
LU Y, TRUMAN W, LIU X T, et al. Different modes of negative regulation of plant immunity by calmodulin-related genes[J]. Plant Physiol, 2018, 176(4): 3046-3061. DOI:10.1104/pp.17.01209
[17]
APPIANO M, PAVAN S, CATALANO D, et al. Identification of candidate MLO powdery mildew susceptibility genes in cultivated Solanaceae and functional characterization of tobacco NtMLO1[J]. Transgen Res, 2015, 24(5): 847-858. DOI:10.1007/s11248-015-9878-4
[18]
PANSTRUGA R. Serpentine plant MLO proteins as entry portals for powdery mildew fungi[J]. Biochem Soc Trans, 2005, 33(2): 389-392. DOI:10.1042/Bst0330389
[19]
BHAT R A, MIKLIS M, SCHMELZER E, et al. Recruitment and interaction dynamics of plant penetration resistance components in a plasma membrane microdomain[J]. Proc Natl Acad Sci USA, 2005, 102(8): 3135-3140. DOI:10.1073/pnas.0500012102
[20]
ZHENG Z, NONOMURA T, APPIANO M, et al. Loss of function in Mlo orthologs reduces susceptibility of pepper and tomato to powdery mildew disease caused by Leveillula taurica[J]. PLoS One, 2013, 8(7): e70723. DOI:10.1371/journal.pone.0070723
[21]
KIM D S, CHOI H W, HWANG B K. Pepper mildew resistance locus O interacts with pepper calmodulin and suppresses Xanthomonas AvrBsT-triggered cell death and defense responses[J]. Planta, 2014, 240(4): 827-839. DOI:10.1007/s00425-014-2134-y
[22]
KIM D S, HWANG B K. The pepper MLO gene, CaMLO2, is involved in the susceptibility cell-death response and bacterial and oomycete proliferation[J]. Plant J, 2012, 72(5): 843-855. DOI:10.1111/tpj.12003
[23]
YU G C, CHEN Q M, WANG X Y, et al. Mildew resistance locus O genes CsMLO1 and CsMLO2 are negative modulators of the Cucumis sativus defense response to Corynespora cassiicola[J]. Int J Mol Sci, 2019, 20(19): 4793. DOI:10.3390/ijms20194793
[24]
LIM C W, LEE S C. Functional roles of the pepper MLO protein gene, CaMLO2, in abscisic acid signaling and drought sensitivity[J]. Plant Mol Biol, 2014, 85(1/2): 1-10. DOI:10.1007/s11103-013-0155-8
[25]
RODRIGUEZ M C S, PETERSEN M, MUNDY J. Mitogen-activated protein kinase signaling in plants[J]. Annu Rev Plant Biol, 2010, 61: 621-649. DOI:10.1146/annurev-arplant-042809-112252
[26]
YAMAKAWA H, KATOU S, SEO S, et al. Plant MAPK phosphatase interacts with calmodulins[J]. J Biol Chem, 2004, 279(2): 928-936. DOI:10.1074/jbc.M310277200
[27]
LEE K, SONG E H, KIM H S, et al. Regulation of MAPK phosphatase 1 (AtMKP1) by calmodulin in Arabidopsis[J]. J Biol Chem, 2008, 283(35): 23581-23588. DOI:10.1074/jbc.M801549200
[28]
YOO J H, CHEONG M S, PARK C Y, et al. Regulation of the dual specificity protein phosphatase, DsPTP1, through interactions with calmodulin[J]. J Biol Chem, 2004, 279(2): 848-858. DOI:10.1074/jbc.M310709200
[29]
ZAÏDI I, EBEL C, TOUZRI M, et al. TMKP1 is a novel wheat stress responsive MAP kinase phosphatase localized in the nucleus[J]. Plant Mol Biol, 2010, 73(3): 325-338. DOI:10.1007/s11103-010-9617-4
[30]
ZAIDI I, EBEL C, BELGAROUI N, et al. The wheat MAP kinase phosphatase 1 alleviates salt stress and increases antioxidant activities in Arabidopsis[J]. J Plant Physiol, 2016, 193: 12-21. DOI:10.1016/j.jplph.2016.01.011
[31]
ULM R, ICHIMURA K, MIZOGUCHI T, et al. Distinct regulation of salinity and genotoxic stress responses by Arabidopsis MAP kinase phosphatase 1[J]. EMBO J, 2002, 21(23): 6483-6493. DOI:10.1093/emboj/cdf646
[32]
BARTELS S, ANDERSON J C, BESTEIRO M A G, et al. MAP kinase phosphatase1 and protein tyrosine phosphatase1 are repressors of salicylic acid synthesis and SNC1-mediated responses in Arabidopsis[J]. Plant Cell, 2009, 21(9): 2884-2897. DOI:10.1105/tpc.109.067678
[33]
LIU R, LIU Y G, YE N H, et al. AtDsPTP1 acts as a negative regulator in osmotic stress signaling during Arabidopsis seed germination and seedling establishment[J]. J Exp Bot, 2015, 66(5): 1339-1353. DOI:10.1093/jxb/eru484
[34]
BONZA M C, MORANDINI P, LUONI L, et al. At-ACA8 encodes a plasma membrane-localized calcium-ATPase of Arabidopsis with a calmodulin-binding domain at the N terminus[J]. Plant Physiol, 2000, 123(4): 1495-1506. DOI:10.1104/pp.123.4.1495
[35]
LIU H T, LI G L, CHANG H, et al. Calmodulin-binding protein phosphatase PP7 is involved in thermotolerance in Arabidopsis[J]. Plant Cell Environ, 2007, 30(2): 156-164. DOI:10.1111/j.1365-3040.2006.01613.x
[36]
ZHANG X, ZHOU H Y, ZANG X N, et al. MIPS: A calmodulinbinding protein of Gracilaria lemaneiformis under heat shock[J]. Mar Biotechnol, 2014, 16(4): 475-483. DOI:10.1007/s10126-014-9565-0
[37]
LIU H T, GAO F, LI G L, et al. The calmodulin-binding protein kinase 3 is part of heat-shock signal transduction in Arabidopsis thaliana[J]. Plant J, 2008, 55(5): 760-773. DOI:10.1111/j.1365-313X.2008.03544.x
[38]
NI L, WANG S, SHEN T, et al. Calcium/calmodulin-dependent protein kinase OsDMI3 positively regulates saline-alkaline tolerance in rice roots[J]. Plant Sign Behav, 2020, 15(11): 1813999. DOI:10.1080/15592324.2020.1813999
[39]
YANG J, JI L X, LIU S, et al. The CaM1-associated CCaMK-MKK1/6 cascade positively affects lateral root growth via auxin signaling under salt stress in rice[J]. J Exp Bot, 2021, 72(18): 6611-6627. DOI:10.1093/jxb/erab287
[40]
YOO J H, PARK C Y, KIM J C, et al. Direct interaction of a divergent CaM isoform and the transcription factor, MYB2, enhances salt tolerance in Arabidopsis[J]. J Biol Chem, 2005, 280(5): 3697-3706. DOI:10.1074/jbc.M408237200
[41]
YOO C Y, PENCE H E, JIN J B, et al. The Arabidopsis GTL1 transcription factor regulates water use efficiency and drought tolerance by modulating stomatal density via transrepression of SDD1[J]. Plant Cell, 2010, 22(12): 4128-4141. DOI:10.1105/tpc.110.078691
[42]
WENG H, YOO C Y, GOSNEY M J, et al. Poplar GTL1 is a Ca2+/calmodulin-binding transcription factor that functions in plant water use efficiency and drought tolerance[J]. PLoS One, 2012, 7(3): e32925. DOI:10.1371/journal.pone.0032925
[43]
YOSHIDA T, FUJITA Y, SAYAMA H, et al. AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation[J]. Plant J, 2010, 61(4): 672-685. DOI:10.1111/j.1365-313X.2009.04092.x
[44]
PARK C Y, LEE J H, YOO J H, et al. WRKY group IId transcription factors interact with calmodulin[J]. FEBS Lett, 2005, 579(6): 1545-1550. DOI:10.1016/j.febslet.2005.01.057
[45]
ARRAÑO-SALINAS P, DOMÍNGUEZ-FIGUEROA J, HERRERA-VÁSQUEZ A, et al. WRKY7, -11 and -17 transcription factors are modulators of the bZIP28 branch of the unfolded protein response during PAMP-triggered immunity in Arabidopsis thaliana[J]. Plant Sci, 2018, 277: 242-250. DOI:10.1016/j.plantsci.2018.09.019
[46]
CHOI J, HUH S U, KOJIMA M, et al. The cytokinin-activated transcription factor ARR2 promotes plant immunity via TGA3/NPR1-dependent salicylic acid signaling in Arabidopsis[J]. Dev Cell, 2010, 19(2): 284-295. DOI:10.1016/j.devcel.2010.07.011
[47]
LEE S M, KIM H S, HAN H J, et al. Identification of a calmodulin-regulated autoinhibited Ca2+-ATPase (ACA11) that is localized to vacuole membranes in Arabidopsis[J]. FEBS Lett, 2007, 581(21): 3943-3949. DOI:10.1016/j.febslet.2007.07.023
[48]
BOURSIAC Y, LEE S M, ROMANOWSKY S, et al. Disruption of the vacuolar calcium-ATPases in Arabidopsis results in the activation of a salicylic acid-dependent programmed cell death pathway[J]. Plant Physiol, 2010, 154(3): 1158-1171. DOI:10.1104/pp.110.159038
[49]
DIT F N F, MBENGUE M, KWAAITAAL M, et al. Plasma membrane calcium ATPases are important components of receptor-mediated signaling in plant immune responses and development[J]. Plant Physiol, 2012, 159(2): 798-809. DOI:10.1104/pp.111.192575
[50]
CAMPE R, LANGENBACH C, LEISSING F, et al. ABC transporter PEN3/PDR8/ABCG36 interacts with calmodulin that, like PEN3, is required for Arabidopsis nonhost resistance[J]. New Phytol, 2016, 209(1): 294-306. DOI:10.1111/nph.13582
[51]
APSE M P, AHARON G S, SNEDDEN W A, et al. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis[J]. Science, 1999, 285(5431): 1256-1258. DOI:10.1126/science.285.5431.1256
[52]
YAMAGUCHI T, AHARON G S, SOTTOSANTO J B, et al. Vacuolar Na+/H+ antiporter cation selectivity is regulated by calmodulin from within the vacuole in a Ca2+- and pH-dependent manner[J]. Proc Natl Acad Sci USA, 2005, 102(44): 16107-16112. DOI:10.1073/pnas.0504437102
[53]
YANG T B, POOVAIAH B W. A calmodulin-binding/CGCG box DNA-binding protein family involved in multiple signaling pathways in plants[J]. J Biol Chem, 2002, 277(47): 45049-45058. DOI:10.1074/jbc.M207941200
[54]
YANG T B, POOVAIAH B W. An early ethylene up-regulated gene encoding a calmodulin-binding protein involved in plant senescence and death[J]. J Biol Chem, 2000, 275(49): 38467-38473. DOI:10.1074/jbc.M003566200
[55]
YANG T B, PENG H, WHITAKER B D, et al. Characterization of a calcium/calmodulin-regulated SR/CAMTA gene family during tomato fruit development and ripening[J]. BMC Plant Biol, 2012, 12: 19. DOI:10.1186/1471-2229-12-19
[56]
KOO S C, CHOI M S, CHUN H J, et al. The calmodulin-binding transcription factor OsCBT suppresses defense responses to pathogens in rice[J]. Mol Cells, 2009, 27(5): 563-570. DOI:10.1007/s10059-009-0081-4
[57]
WANG Y L, WEI F J, ZHOU H, et al. TaCAMTA4, a calmodulin-interacting protein, involved in defense response of wheat to Puccinia triticina[J]. Sci Rep, 2019, 9(1): 641. DOI:10.1038/s41598-018-36385-1
[58]
DU L Q, ALI G S, SIMONS K A, et al. Ca2+/calmodulin regulates salicylic-acid-mediated plant immunity[J]. Nature, 2009, 457(7233): 1154-1158. DOI:10.1038/nature07612
[59]
NIE H Z, ZHAO C Z, WU G H, et al. SR1, a calmodulin-binding transcription factor, modulates plant defense and ethylene-induced senescence by directly regulating NDR1 and EIN3[J]. Plant Physiol, 2012, 158(4): 1847-1859. DOI:10.1104/pp.111.192310
[60]
GALON Y, NAVE R, BOYCE J M, et al. Calmodulin-binding transcription activator (CAMTA) 3 mediates biotic defense responses in Arabidopsis[J]. FEBS Lett, 2008, 582(6): 943-948. DOI:10.1016/j.febslet.2008.02.037
[61]
RAHMAN H, YANG J, XU Y P, et al. Phylogeny of plant CAMTAs and role of AtCAMTAs in nonhost resistance to Xanthomonas oryzae pv. oryzae[J]. Front Plant Sci, 2016, 7: 177. DOI:10.3389/fpls.2016.00177
[62]
RAHMAN H, XU Y P, ZHANG X R, et al. Brassica napus genome possesses extraordinary high number of CAMTA genes and CAMTA3 contributes to PAMP triggered immunity and resistance to Sclerotinia sclerotiorum[J]. Front Plant Sci, 2016, 7: 581. DOI:10.3389/fpls.2016.00581
[63]
LI X H, HUANG L, ZHANG Y F, et al. Tomato SR/CAMTA transcription factors SlSR1 and SlSR3L negatively regulate disease resistance response and SlSR1L positively modulates drought stress tolerance[J]. BMC Plant Biol, 2014, 14: 286. DOI:10.1186/s12870-014-0286-3
[64]
LALUK K, PRASAD K V S K, SAVCHENKO T, et al. The calmodulin-binding transcription factor SIGNAL RESPONSIVE1 is a novel regulator of glucosinolate metabolism and herbivory tolerance in Arabidopsis[J]. Plant Cell Physiol, 2012, 53(12): 2008-2015. DOI:10.1093/pcp/pcs143
[65]
QIU Y J, XI J, DU L Q, et al. Coupling calcium/calmodulin-mediated signaling and herbivore-induced plant response through calmodulin-binding transcription factor AtSR1/CAMTA3[J]. Plant Mol Biol, 2012, 79(1/2): 89-99. DOI:10.1007/s11103-012-9896-z
[66]
PRASAD K V S K, ABDEL-HAMEED A A E, XING D H, et al. Global gene expression analysis using RNA-seq uncovered a new role for SR1/CAMTA3 transcription factor in salt stress[J]. Sci Rep, 2016, 6: 27021. DOI:10.1038/srep27021
[67]
SHKOLNIK D, FINKLER A, PASMANIK-CHOR M, et al. Calmodulin-binding transcription activator 6: A key regulator of Na+ homeostasis during germination[J]. Plant Physiol, 2019, 180(2): 1101-1118. DOI:10.1104/pp.19.00119
[68]
PANDEY N, RANJAN A, PANT P, et al. CAMTA 1 regulates drought responses in Arabidopsis thaliana[J]. BMC Genom, 2013, 14: 216. DOI:10.1186/1471-2164-14-216
[69]
DOHERTY C J, VAN BUSKIRK H A, MYERS S J, et al. Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance[J]. Plant Cell, 2009, 21(3): 972-984. DOI:10.1105/tpc.108.063958
[70]
ABEL S, SAVCHENKO T, LEVY M. Genome-wide comparative analysis of the IQD gene families in Arabidopsis thaliana and Oryza sativa[J]. BMC Evol Biol, 2005, 5: 72. DOI:10.1186/1471-2148-5-72
[71]
LEVY M, WANG Q M, KASPI R, et al. Arabidopsis IQD1, a novel calmodulin-binding nuclear protein, stimulates glucosinolate accumulation and plant defense[J]. Plant J, 2005, 43(1): 79-96. DOI:10.1111/j.1365-313X.2005.02435.x
[72]
WEI H Y, GUO Z Q, WANG Z J, et al. Isolation and characterization of calmodulin-binding protein AtIQD26 in Arabidopsis thaliana[J]. Prog Biochem Biophys, 2008, 35(6): 703-711.
韦慧彦, 郭振清, 王振杰, 等. 拟南芥钙调素结合蛋白AtIQD26的分离鉴定[J]. 生物化学与生物物理进展, 2008, 35(6): 703-711. DOI:10.3321/j.issn:1000-3282.2008.06.015
[73]
BARDA O, LEVY M. IQD1 Involvement in hormonal signaling and general defense responses against Botrytis cinerea[J]. Front Plant Sci, 2022, 13: 845140. DOI:10.3389/fpls.2022.845140
[74]
YANG X, KIRUNGU J N, MAGWANGA R O, et al. Knockdown of GhIQD31 and GhIQD32 increases drought and salt stress sensitivity in Gossypium hirsutum[J]. Plant Physiol Biochem, 2019, 144: 166-177. DOI:10.1016/j.plaphy.2019.09.027
[75]
YUAN J P, LIU T K, YU Z H, et al. Genome-wide analysis of the Chinese cabbage IQD gene family and the response of BrIQD5 in drought resistance[J]. Plant Mol Biol, 2019, 99(6): 603-620. DOI:10.1007/s11103-019-00839-5
[76]
YUAN J, YU Z, LI Y, et al. Ectopic expression of BrIQD35 promotes drought stress tolerance in Nicotiana benthamiana[J]. Plant Biol, 2022, 24(5): 887-896. DOI:10.1111/plb.13425
[77]
ZHOU Y P, DUAN J, FUJIBE T, et al. AtIQM1, a novel calmodulin-binding protein, is involved in stomatal movement in Arabidopsis[J]. Plant Mol Biol, 2012, 79(4): 333-346. DOI:10.1007/s11103-012-9915-0
[78]
ZHOU Y P, WU J H, XIAO W H, et al. Arabidopsis IQM4, a novel calmodulin-binding protein, is involved with seed dormancy and germination in Arabidopsis[J]. Front Plant Sci, 2018, 9: 721. DOI:10.3389/fpls.2018.00721
[79]
FAN T, LV T X, XIE C P, et al. Genome-wide analysis of the IQM gene family in rice (Oryza sativa L. )[J]. Plants, 2021, 10(9): 1949. DOI:10.3390/plants10091949
[80]
LÜ T X, LI X M, FAN T, et al. The calmodulin-binding protein IQM1 interacts with CATALASE2 to affect pathogen defense[J]. Plant Physiol, 2019, 181(3): 1314-1327. DOI:10.1104/pp.19.01060
[81]
LI M J, LEI J F, ZULIPIYE·Tuoheniyazi, et al. Cloning and functional verification of GhIQM1 gene of cotton in response to Verticillium wilt[J]. Acta Agron Sin, 2022, 48(9): 2265-2273.
李名江, 雷建峰, 祖丽皮耶·托合尼亚孜, 等. 棉花GhIQM1基因克隆及抗黄萎病功能分析[J]. 作物学报, 2022, 48(9): 2265-2273. DOI:10.3724/SP.J.1006.2022.14109
[82]
SCHUURINK R C, SHARTZER S F, FATH A, et al. Characterization of a calmodulin-binding transporter from the plasma membrane of barley aleurone[J]. Proc Natl Acad Sci USA, 1998, 95(4): 1944-1949. DOI:10.1073/pnas.95.4.1944
[83]
DEFALCO T A, MOEDER W, YOSHIOKA K. Opening the gates: Insights into cyclic nucleotide-gated channel-mediated signaling[J]. Trends Plant Sci, 2016, 21(11): 903-906. DOI:10.1016/j.tplants.2016.08.011
[84]
GUO J, ISLAM A, LIN H C, et al. Genome-wide identification of cyclic nucleotide-gated ion channel gene family in wheat and functional analyses of TaCNGC14 and TaCNGC16[J]. Front Plant Sci, 2018, 9: 18. DOI:10.3389/fpls.2018.00018
[85]
LI Q Q, YANG S Q, REN J, et al. Genome-wide identification and functional analysis of the cyclic nucleotide-gated channel gene family in Chinese cabbage[J]. 3 Biotech, 2019, 9(3): 114. DOI:10.1007/s13205-019-1647-2
[86]
KÖHLER C, NEUHAUS G. Characterisation of calmodulin binding to cyclic nucleotide-gated ion channels from Arabidopsis thaliana[J]. FEBS Lett, 2000, 471(2/3): 133-136. DOI:10.1016/S0014-5793(00)01383-1
[87]
GENGER R K, JURKOWSKI G I, MCDOWELL J M, et al. Signaling pathways that regulate the enhanced disease resistance of ArabidopsisDefense, No Death” mutants[J]. Mol Plant Microbe Interact, 2008, 21(10): 1285-1296. DOI:10.1094/Mpmi-21-10-1285
[88]
YOSHIOKA K, MOEDER W, KANG H G, et al. The chimeric Arabidopsis cyclic nucleotide-gated ion channell11/12 activates multiple pathogen resistance responses[J]. Plant Cell, 2006, 18(3): 747-763. DOI:10.1105/tpc.105.038786
[89]
MOEDER W, URQUHART W, UNG H, et al. The role of cyclic nucleotide-gated ion channels in plant immunity[J]. Mol Plant, 2011, 4(3): 442-452. DOI:10.1093/mp/ssr018
[90]
ZHANG Z L, HOU C C, TIAN W, et al. Electrophysiological studies revealed CaM1-mediated regulation of the Arabidopsis calcium channel CNGC12[J]. Front Plant Sci, 2019, 10: 1090. DOI:10.3389/fpls.2019.01090
[91]
ZHAO C H, TANG Y H, WANG J L, et al. A mis-regulated cyclic nucleotide-gated channel mediates cytosolic calcium elevation and activates immunity in Arabidopsis[J]. New Phytol, 2021, 230(3): 1078-1094. DOI:10.1111/nph.17218
[92]
MEENA M K, PRAJAPATI R, KRISHNA D, et al. The Ca2+ channel CNGC19 regulates Arabidopsis defense against Spodoptera herbivory[J]. Plant Cell, 2019, 31(7): 1539-1562. DOI:10.1105/tpc.19.00057
[93]
FINKA A, CUENDET A F H, MAATHUIS F J M, et al. Plasma membrane cyclic nucleotide gated calcium channels control land plant thermal sensing and acquired thermo-tolerance[J]. Plant Cell, 2012, 24(8): 3333-3348. DOI:10.1105/tpc.112.095844
[94]
KATANO K, KATAOKA R, FUJII M, et al. Differences between seedlings and flowers in anti-ROS based heat responses of Arabidopsis plants deficient in cyclic nucleotide gated channel 2[J]. Plant Physiol Biochem, 2018, 123: 288-296. DOI:10.1016/j.plaphy.2017.12.021
[95]
JIN Y K, JING W, ZHANG Q, et al. Cyclic nucleotide gated channel 10 negatively regulates salt tolerance by mediating Na+ transport in Arabidopsis[J]. J Plant Res, 2015, 128(1): 211-220. DOI:10.1007/s10265-014-0679-2
[96]
KUGLER A, KÖHLER B, PALME K, et al. Salt-dependent regulation of a CNG channel subfamily in Arabidopsis[J]. BMC Plant Biol, 2009, 9: 140. DOI:10.1186/1471-2229-9-140
[97]
ORANAB S, GHAFFAR A, KIRAN S, et al. Molecular characterization and expression of cyclic nucleotide gated ion channels 19 and 20 in Arabidopsis thaliana for their potential role in salt stress[J]. Saudi J Biol Sci, 2021, 28(10): 5800-5807. DOI:10.1016/j.sjbs.2021.06.027
[98]
FOTH B J, GOEDECKE M C, SOLDATI D. New insights into myosin evolution and classification[J]. Proc Natl Acad Sci USA, 2006, 103(10): 3681-3686. DOI:10.1073/pnas.0506307103
[99]
HARAGUCHI T, ITO K, DUAN Z R, et al. Functional diversity of class XI myosins in Arabidopsis thaliana[J]. Plant Cell Physiol, 2018, 59(11): 2268-2277. DOI:10.1093/pcp/pcy147
[100]
YANG L, QIN L, LIU G S, et al. Myosins XI modulate host cellular responses and penetration resistance to fungal pathogens[J]. Proc Natl Acad Sci USA, 2014, 111(38): 13996-14001. DOI:10.1073/pnas.1405292111