b. 云南农业大学,西南中药材种质创新与利用国家地方联合工程研究中心, 昆明 650201;
c. 云南农业大学,理学院, 昆明 650201
b. National & Local Joint Engineering Research Center on Germplasms Utilization & Innovation of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, China;
c. College of Science, Yunnan Agricultural University, Kunming 650201, China
姜状三七(Panax zingiberensis)为五加科(Araliaceae)人参属植物,根茎入药,主要用于治疗跌打损伤、劳虚咳嗽、外伤出血及贫血等症, 也作三七代用品。国外主要分布于尼泊尔中部、不丹高海拔地区、缅甸东枝、掸邦等地[1–4],国内分布于云南东南部的马关、砚山等地。野生资源分布狭窄及过度采挖,导致该物种于1997年被国际自然保护联盟列为濒危种。由于材料的难以采集导致关于该植物的研究较少。目前只从该植物中分离鉴定了三萜皂苷类化合物不到10个,有人参二醇型、人参三醇型和齐墩果烷型,且其生物活性的研究也鲜见报道[5–7]。本课题组在前期研究[8]的基础上对其化学成分进行了系统研究,从中分离鉴定了9个皂苷类化合物,为寻找活性物质提供了化学基础,也为姜状三七植物资源的合理开发和利用奠定理论基础。
1 材料和方法 1.1 材料材料购自云南省普洱市镇沅县九甲镇三台村林下经济种植示范基地,经云南农业大学张广辉教授鉴定为五加科人参属植物姜状三七(Panax zingiberensis),标本存放于云南农业大学西南中药材种质创新与利用国家地方联合工程研究中心。
1.2 仪器和试剂API Qstar Pulsa LC/TOF质谱仪,Bruker AM-400、DRX-500和AVANCE III-600 MHz超导核磁共振仪(瑞士Bruker公司),TMS为内标,化学位移δ用ppm表示,耦合常数J用Hz表示;中药高速粉碎机(浙江永历制药机械有限公司);旋转蒸发仪(东京理化仪器有限公司);超声波清洗机(上海声源超声波仪器有限责任公司);柱层析硅胶和硅胶G薄层板(青岛海洋化工厂);AB-8 (大孔树脂天津波鸿树脂科技有限公司);反相硅胶板和柱层析用RP-18 (德国Merk公司);Sephadex LH-20 (Amer-sham Pharmacia Biotech公司);显色剂(5%硫酸乙醇溶液), 甲醇、氯仿、丙酮和乙酸乙酯为工业级重蒸后使用, 正丁醇、冰乙酸为分析纯,乙腈为色谱纯, 水为哇哈哈纯净水。
1.3 提取和分离姜状三七根茎粗粉2.8 kg,加8倍量70%甲醇溶液常温浸泡3 d,超声提取3次,提取时间分别为2、1.5和1.5 h,合并提取液回收甲醇至无醇味, 药液分次过已预处理好的AB-8大孔树脂柱(2 kg),以蒸馏水洗脱至Molish反应为阴性,再以80%甲醇(共8 L)洗脱,收集甲醇洗脱液,回收甲醇,浓缩干燥得姜状三七总皂苷(440 g)。
将总皂苷吸附于1.0 kg硅胶上进行柱层析,流动相以氯仿-甲醇-水(10∶1∶0~0∶1∶1)梯度洗脱, 收集洗脱液,每份0.5 L,共收集292份,薄层鉴别合并洗脱液得Fr1~Fr8组分。组分Fr 4 (150 g)上硅胶柱色谱,用氯仿-甲醇-水溶剂系统进行梯度洗脱,得到3个馏分Fr 4.1~Fr 4.3。Fr 4.1 (20 g)经硅胶柱色谱,以氯仿-甲醇-水(9∶1∶0.2~7∶3∶0.5)梯度洗脱,再以Sephadex LH-20 (甲醇)纯化,得到化合物1 (2 mg)、2 (8 mg)和3 (246 mg)。Fr 4.2 (50 g)经反复硅胶柱层析(氯仿-乙酸乙酯-甲醇-水;氯仿-甲醇-水)梯度洗脱,得到化合物4 (6 mg)、5 (10 mg)、6 (10 mg)和7 (2 g)。Fr 4.3 (30 g)过Rp-18柱色谱, 以水-甲醇(9∶1~0∶1)梯度洗脱,再以Sephadex LH-20 (甲醇)纯化,得到化合物8 (6 mg)和9 (10 mg) (图1)。
化合物1 白色结晶,ESI-MS m/z: 693 [M + Na]+; 1H NMR (400 MHz, CD3OD): δ 4.34 (1H, d, J = 7.8 Hz, H′-6), 1.76, 1.32, 1.12, 1.09, 1.00, 0.99, 0.94 (each 3H, s, CH3×7); 13C NMR (125 MHz, CD3OD): δ 40.5 (C-1), 27.5 (C-2), 79.1 (C-3), 40.4 (C-4), 61.8 (C-5), 79.9 (C-6), 45.3 (C-7), 41.8 (C-8), 50.9 (C-9), 40.2 (C-10), 32.0 (C-11), 71.7 (C-12), 49.5 (C-13), 52.5 (C-14), 31.9 (C-15), 27.4 (C-16), 52.5 (C-17), 17.9 (C-18), 17.5 (C-19), 74.2 (C-20), 22.6 (C-21), 40.4 (C-22), 26.4 (C-23), 91.2 (C-24), 146.2 (C-25), 113.9 (C-26), 17.8 (C-27), 31.4 (C-28), 16.8 (C-29), 17.3 (C-30), 105.5 (C-1′), 75.5 (C-2′), 80.9 (C-3′), 72.0 (C-4′), 77.7 (C-5′), 62.9 (C-6′)。以上数据与文献[9]报道基本一致,故鉴定为人参皂苷SL1。
化合物2 白色粉末, ESI-MS m/z: 661 [M + Na]+; 1H NMR (400 MHz, CD3OD): δ 4.38 (1H, d, J = 7.8 Hz, H-1′), 1.70, 1.64, 1.34, 1.17, 1.11, 1.02, 1.01, 0.96 (each 3H, s, CH3×8); 13C NMR (100 MHz, CD3OD): δ 40.2 (C-1), 27.6 (C-2), 79.9 (C-3), 40.5 (C-4), 61.8 (C-5), 77.6 (C-6), 45.3 (C-7), 41.8 (C-8), 50.9 (C-9), 40.4 (C-10), 31.9 (C-11), 71.7 (C-12), 48.5 (C-13), 52.5 (C-14), 31.9 (C-15), 27.4 (C-16), 55.1 (C-17), 17.8 (C-18), 17.9 (C-19), 74.5 (C-20), 26.6 (C-21), 36.3 (C-22), 23.3 (C-23), 126.2 (C-24), 132.1 (C-25), 26.0 (C-26), 17.6 (C-27), 31.4 (C-28), 16.2 (C-29), 17.1 (C-30), 105.5 (C-1′), 75.5 (C-2′), 81.8 (C-3′), 71.7 (C-4′), 79.0 (C-5′), 62.9 (C-6′)。以上数据与文献[10]报道基本一致,故鉴定为人参皂苷Rh1。
化合物3 白色粉末, ESI-MS m/z: 653 [M -H]–; 1H NMR (400 MHz, C5D5N): δ 5.07 (1H, d, J = 7.8 Hz, H-1′), 2.06, 1.63, 1.56, 1.55, 1.39, 1.26, 1.06, 0.80 (each 3H, s, CH3×8); 13C NMR (100 MHz, C5D5N): δ 39.7 (C-1), 28.0 (C-2), 78.6 (C-3), 40.1 (C-4), 61.5 (C-5), 80.1 (C-6), 45.2 (C-7), 41.1 (C-8), 50.2 (C-9), 39.4 (C-10), 32.2 (C-11), 71.1 (C-12), 48.5 (C-13), 51.7 (C-14), 31.2 (C-15), 26.8 (C-16), 54.2 (C-17), 17.4 (C-18), 17.8 (C-19), 73.3 (C-20), 27.7 (C-21), 137.6 (C-22), 127.4 (C-23), 40.4 (C-24), 81.3 (C-25), 25.2 (C-26), 25.3 (C-27), 31.8 (C-28), 16.4 (C-29), 16.8 (C-30), 106.0 (C-1′), 75.5 (C-2′), 79.7 (C-3′), 71.8 (C-4′), 78.3 (C-5′), 63.1 (C-6′)。以上数据与文献[11]报道基本一致,故鉴定为三七皂苷R8。
化合物4 白色粉末, ESI-MS m/z: 793 [M -H]–; 1H NMR (400 MHz, CD3OD): δ 6.53 (1H, d, J = 7.6 Hz, H-1′), 4.82 (1H, d, J = 7.2 Hz, H-1″), 1.15, 1.04, 0.94, 0.93, 0.90, 0.83, 0.796, 0.80 (each 3H, s, CH3×7); 13C NMR (100 MHz, CD3OD): δ 40.2 (C-1), 26.4 (C-2), 90.8 (C-3), 40.0 (C-4), 57.0 (C-5), 19.5 (C-6), 33.5 (C-7), 40.8 (C-8), 49.0 (C-9), 37.8 (C-10), 24.7 (C-11), 123.8 (C-12), 144.8 (C-13), 43.0 (C-14), 28.7 (C-15), 24.1 (C-16), 48.0 (C-17), 42.9 (C-18), 47.4 (C-19), 31.6 (C-20), 35.0 (C-21), 34.1 (C-22), 28.6 (C-23), 17.0 (C-24), 16.1 (C-25), 17.8 (C-26), 26.4 (C-27), 178.0 (C-28), 33.5 (C-29), 24.0 (C-30), 106.7 (3-Glc, C-1′), 75.5 (C-2′), 78.0 (C-3′), 73.7 (C-4′), 75.5 (C-5′), 176.6 (C-6′), 95.7 (28-Glc, C-1″), 73.9 (C-2″), 78.6 (C-3″), 71.1 (C-4″), 78.7 (C-5″), 62.5 (C-6″)。以上数据与文献[12]报道基本一致,故鉴定为竹节参皂苷IVa。
化合物5 白色粉末, ESI-MS m/z: 653 [M - H]–; 1H NMR (400 MHz, C5D5N): δ 5.03 (1H, d, J = 7.8 Hz, H-1′), 2.06, 1.68, 1.60, 1.52, 1.31, 1.19, 1.03, 0.80 (each 3H, s, CH3×7); 13C NMR (100 MHz, C5D5N): δ 39.5 (C-1), 28.1 (C-2), 78.7 (C-3), 40.5 (C-4), 61.6 (C-5), 78.3 (C-6), 45.1 (C-7), 41.2 (C-8), 50.2 (C-9), 39.7 (C-10), 32.2 (C-11), 70.7 (C-12), 48.9 (C-13), 52.4 (C-14), 31.8 (C-15), 28.0 (C-16), 52.1 (C-17), 17.6 (C-18), 17.9 (C-19), 78.1 (C-20), 26.4 (C-21), 27.8 (C-22), 25.9 (C-23), 74.5 (C-24), 78.7 (C-25), 23.3 (C-26), 30.1 (C-27), 31.8 (C-28), 16.4 (C-29), 17.3 (C-30), 106.1 (3-Glc, C-1′), 75.7 (C-2′), 80.3 (C-3′), 71.9 (C-4′), 79.7 (C-5′), 63.1 (C-6′)。以上数据与文献[13]报道基本一致,故鉴定为越南人参皂苷R10。
化合物6 白色粉末, ESI-MS m/z: 799 [M - H]–; 1H NMR (500 MHz, CD3OD): δ 5.15 (1H, d, J = 7.8 Hz, H-1″), 4.98 (1H, d, J = 7.8 Hz, H-1′), 2.03, 1.58, 1.56, 1.56, 1.55, 1.11, 0.98, 0.75 (each 3H, s, CH3× 8); 13C NMR (125 MHz, CD3OD): δ 39.5 (C-1), 28.0 (C-2), 78.7 (C-3), 40.5 (C-4), 61.5 (C-5), 78.3 (C-6), 45.2 (C-7), 41.2 (C-8), 50.1 (C-9), 39.7 (C-10), 31.0 (C-11), 70.4 (C-12), 49.2 (C-13), 51.5 (C-14), 30.8 (C-15), 26.7 (C-16), 51.7 (C-17), 17.7 (C-18), 17.7 (C-19), 83.4 (C-20), 22.5 (C-21), 36.1 (C-22), 23.4 (C-23), 126.0 (C-24), 131.1 (C-25), 17.9 (C-26), 25.9 (C-27), 31.9 (C-28), 17.2 (C-29), 16.2 (C-30), 106.1 (3-Glc, C-1′), 75.5 (C-2′), 80.3 (C-3′), 71.8 (C-4′), 80.0 (C-5′), 63.1 (C-6′), 98.3 (20-Glc, C-1″), 75.2 (C-2″), 79.3 (C-3″), 71.6 (C-4″), 78.4 (C-5″), 62.8 (C-6″)。以上数据与文献[14]报道基本一致,鉴定为人参皂苷Rg1。
化合物7 白色粉末, ESI-MS m/z: 955 [M - H]–; 1H NMR (400 MHz, CD3OD): δ 5.37 (1H, d, J = 8.0 Hz, H-12), 1.15, 1.04, 0.94, 0.93, 0.90, 0.83, 0.79 (each 3H, s, CH3×7); 13C NMR (100 MHz, CD3OD): δ 39.8 (C-1), 27.0 (C-2), 90.8 (C-3), 40.3 (C-4), 57.0 (C-5), 19.0 (C-6), 34.0 (C-7), 40.7 (C-8), 48.4 (C-9), 37.5 (C-10), 23.9 (C-11), 123.8 (C-12), 144.8 (C-13), 41.9 (C-14), 28.9 (C-15), 23.5 (C-16), 47.5 (C-17), 42.2 (C-18), 46.4 (C-19), 32.0 (C-20), 33.5 (C-21), 33.5 (C-22), 28.5 (C-23), 17.7 (C-24), 16.0 (C-25), 17.7 (C-26), 26.3 (C-27), 178.1 (C-28), 33.5 (C-29), 24.0 (C-30), 109.4 (3-Glc A, C-1′), 73.9 (C-2′), 86.4 (C-3′), 71.1 (C-4′), 76.7 (C-5′), 176.2 (C-6′), 106.8 (20-Glc, C-1″), 75.4 (C-2″), 76.6 (C-3″), 76.5 (C-4″), 78.7 (C-5″), 63.2 (C-6″), 95.7 (28-Glc, C-1‴), 73.9 (C-2‴), 82.9 (C-3‴), 71.1 (C-4‴), 78.7 (C-5‴), 62.4 (C-6‴)。以上数据与文献[12,15]报道基本一致, 鉴定为菠棱皂苷A 28-O-葡萄糖苷。
化合物8 白色粉末, ESI-MS m/z: 617 [M - H]–; 1H NMR (400 MHz, C5D5N): δ 6.32 (1H, d, J = 6.5 Hz, H-1′), 1.23, 1.22, 1.12, 1.02, 0.90, 0.89, 0.85 (each 3H, s, CH3×7); 13C NMR (100 MHz, C5D5N): δ 39.1 (C-1), 28.4 (C-2), 78.3 (C-3), 40.4 (C-4), 55.9 (C-5), 18.9 (C-6), 33.3 (C-7), 39.5 (C-8), 48.2 (C-9), 39.7 (C-10), 23.9 (C-11), 123.0 (C-12), 144.3 (C-13), 41.9 (C-14), 28.9 (C-15), 23.5 (C-16), 47.1 (C-17), 42.2 (C-18), 46.3 (C-19), 30.9 (C-20), 34.1 (C-21), 32.6 (C-22), 30.9 (C-23), 15.7 (C-24), 16.7 (C-25), 17.6 (C-26), 26.2 (C-27), 176.7 (C-28), 23.8 (C-29), 33.2 (C-30), 95.9 (28-Glc, C-1′), 79.5 (C-2′), 79.0 (C-3′), 71.2 (C-4′), 74.2 (C-5′), 62.3 (C-6′)。以上数据与文献[16]报道数据一致, 故鉴定为齐墩果酸28-O-β-d-葡萄糖苷。
化合物9 白色粉末, ESI-MS m/z: 793 [M - H]–;1H NMR (500 MHz, C5D5N): δ 5.33 (1H, d, J = 7.7 Hz, H-1″), 4.91 (1H, d, J = 7.3 Hz, H-1′), 1.24, 1.22, 1.03, 0.95, 0.92, 0.91, 0.66 (each 3H, s, CH3×7); 13C NMR (125 MHz, C5D5N): δ 38.6 (C-1), 26.6 (C-2), 89.3 (C-3), 39.7 (C-4), 55.8 (C-5), 18.5 (C-6), 33.4 (C-7), 39.6 (C-8), 48.0 (C-9), 36.9 (C-10), 23.7 (C-11), 122.6 (C-12), 144.9 (C-13), 42.0 (C-14), 28.3(C-15), 23.8 (C-16), 46.7 (C-17), 42.1 (C-18), 46.5 (C-19), 31.0 (C-20), 34.2 (C-21), 33.2 (C-22), 28.2 (C-23), 15.5 (C-24), 16.8 (C-25), 17.4 (C-26), 26.2 (C-27), 180.3 (C-28), 23.8 (C-29), 33.2 (C-30), 106.0 (3-GluUA C-1′), 82.8 (C-2′), 78.5 (C-3′), 73.7 (C-4′), 77.6 (C-5′), 174.9 (C-6′), 105.3 (C-1″), 77.9 (C-2″), 78.5 (C-3″), 71.6 (C-4″), 77.2 (C-5″), 62.6 (C-6″)。以上数据与文献[5]报道一致,故鉴定为姜状三七苷R1。
2 结果和讨论对姜状三七根茎中的化学成分进行了研究, 从70%甲醇提取物中分离鉴定了9个皂苷类化合物, 分别是人参皂苷SL1 (1)、人参皂苷Rh1 (2)、三七皂苷R8 (3)、竹节参皂苷IVa (4)、越南人参皂苷R10 (5)、人参皂苷Rg1 (6)、菠棱皂苷A 28-O-葡萄糖苷 (7)、齐墩果酸28-O-β-d-葡萄糖苷 (8)和姜状三七苷R1 (9)。化合物1、3、5、7和8为首次从姜状三七中分离得到。化合物1~3和6为原人参三醇型皂苷,化合物4、7~9为齐墩果烷型皂苷,化合物5为奥克梯隆醇型人参皂苷,此类型皂苷为首次从姜状三七中得到。
人参皂苷Rg1 (6)是中药人参、三七等人参属药材的主要活性成分之一,可通过抗氧化作用维持细胞内Ca2+的稳态达到保护心肌细胞的作用[17]; 对多种动物中枢神经系统疾病模型具有治疗作用,主要是通过NMDA受体、MAPK、MEK-ERK1/2-PI3K、Ca2+-CaM-CaMK II等信号通路进行调控,作用于皮层、海马、纹状体、下丘脑, 影响神经递质的合成与释放,促进神经细胞生长、神经突触的发生,保护神经元,促进神经干细胞分化等[18]; 还可明显抑制人白血病TF-1细胞的增殖并促进其凋亡,辅助T细胞免疫活性增加,对小鼠免疫性肝损伤也有一定的保护作用[19]。此外, 人参皂苷Rg1还有抗肿瘤, 降血糖、降血脂,抗骨质疏松和抗炎等作用[20]。
竹节参苷Ⅳa (4)也具有多种药理活性,尤其是其卓越的心脑血管保护作用,降糖、降脂作用,抗炎、抗凝血作用以及特异性的肿瘤细胞增殖抑制作用等,相关作用机制及靶点主要包括激活SIRT1/ERK1/2/Homer1a途径,增强机体清除氧自由基的能力、降低心肌细胞膜脂质过氧化的程度,上调PTEN、下调NF-κB的表达,调节Ca2+、K+、Na+等离子的跨膜转运,促进GSK-3β的磷酸化,抑制PKC的磷酸化,抑制Wnt/β-catenin信号通路,抑制炎症因子表达,抑制血小板聚集,诱导肿瘤细胞周期停滞及凋亡,导致病毒直接失活或抑制子代病毒释放[21]。越南人参皂苷R10 (5)为奥克梯隆醇型皂苷, 是一类侧链具有呋喃环的四环三萜类皂苷,主要存在于人参属植物西洋参(P. quinquefolius)、竹节参(P. japonicus)、狭叶竹节参(P. bipinnatifidus var.angustifolius)、珠子参(P. japonicus var. major)、喜马拉雅假人参(P. pseudo-ginseng subsp.himalaicus)中,葫芦科(Cucurbitaceae)和桦木属(Betula)植物中也发现了多种奥克梯隆型皂苷。奥克梯隆型皂苷在这些植物中虽然含量甚微,但具有较强的生物活性,包括保护心肌损伤、增强神经元活性、抗肿瘤等[22–23]。
[1] |
LE T Q, THAN M M, TEZUKA Y, et al. Wild ginseng grows in Myanmar[J]. Chem Pharm Bull, 2003, 51(6): 679-682. DOI:10.1248/cpb.51.679 |
[2] |
Yunnan Institute of Botany. Triterpenoids from Panax Linn. and their relationship with taxonomy and geographical distribution[J]. Acta Phytotax Sin, 1975, 13(2): 29-45. 云南省植物研究所. 人参属植物的三萜成分和分类系统、地理分布的关系[J]. 植物分类学报, 1975, 13(2): 29-45. |
[3] |
NAMBA T, MATSUSHIGE K, MORITA T, et al. Saponins of plants of Panax species collected in central Nepal and their chemotaxonomical significance, I[J]. Chem Pharm Bull, 1986, 34(2): 730-738. DOI:10.1248/cpb.34.730 |
[4] |
TANAKA O, MORITA T, KASAI R, et al. Study on saponins of rhizomes of Panax pseudo-ginseng subsp. himalaicus collected at Tzatogang and Pari-la, Bhutan-Himalaya[J]. Chem Pharm Bull, 1985, 33(6): 2323-2330. DOI:10.1248/cpb.33.2323 |
[5] |
YANG C R, JIANG Z D, WU M Z, et al. Study on saponins of rhizomes of Panax zingiberensis[J]. Acta Pharm Sin, 1984, 19(3): 232-236. 杨崇仁, 姜志东, 伍明珠, 等. 人参属植物姜状三七的皂甙成分[J]. 药学学报, 1984, 19(3): 232-236. DOI:10.16438/j.0513-4870.1984.03.014 |
[6] |
WU Q G, FU D H, WANG L, et al. Determination of notoginsenoside R1, ginsenoside Rg1 and ginsenoside Rb1 in Panax zingiberensis by HPLC[J]. J Yunnan Univ (Nat Sci), 2012, 34(2): 202-206. 吴其国, 符德欢, 王丽, 等. HPLC法测定姜状三七根茎中的人参皂苷Rg1、人参皂苷Rb1和三七皂苷R1[J]. 云南大学学报(自然科学版), 2012, 34(2): 202-206. |
[7] |
YANG W Z, HU Y, WU W Y, et al. Saponins in the genus Panax L. (Araliaceae): A systematic review of their chemical diversity[J]. Phytochemistry, 2014, 106: 7-24. DOI:10.1016/j.phytochem.2014.07.012 |
[8] |
SHEN X J, LI X B, SHEN Y, et al. Saponins chemical constituents from the roots of Panax vietnamensis var. fuscidiscus[J]. J Chin Mat Med, 2018, 41(8): 1894-1898. 沈晓静, 李晓波, 沈勇, 等. 野三七皂苷类化学成分研究[J]. 中药材, 2018, 41(8): 1894-1898. DOI:10.13863/j.issn1001-4454.2018.08.025 |
[9] |
TUNG N H, SONG G Y, VAN MINH C, et al. Steamed ginseng-leaf components enhance cytotoxic effects on human leukemia HL-60 cells[J]. Chem Pharm Bull (Tokyo), 2010, 58(8): 1111-1115. DOI:10.1248/cpb.58.1111 |
[10] |
KOMAKINE N, OKASAKA M, TAKAISHI Y, et al. New dammarane-type saponin from roots of Panax notoginseng[J]. J Nat Med, 2006, 60(2): 135-137. DOI:10.1007/s11418-005-0016-0 |
[11] |
YAHARA S, KAJI K, TANAKA O. Further study on dammarane-type saponins of roots, leaves, flower-buds, and fruits of Panax ginseng C. A. Meyer[J]. Chem Pharm Bull, 1978, 27(1): 88-92. DOI:10.1248/cpb.27.88 |
[12] |
LIANG C, DING Y, NGUYEN H T, et al. Oleanane-type triterpenoids from Panax stipuleanatus and their anticancer activities[J]. Bioorg Med Chem Lett, 2010, 20(23): 7110-7115. DOI:10.1016/j.bmcl.2010.09.074 |
[13] |
NGUYEN M D, KASAI R, OHTANI K, et al. Saponins from vietnamese ginseng, Panax vietnamensis Ha et Grushv. collected in central Vietnam III[J]. Chem Pharm Bull, 1994, 42(3): 634-640. DOI:10.1248/cpb.42.634 |
[14] |
NAGAI Y, TANAKA O, SHIBATA S. Chemical studies on the oriental plant drugs (XXIV): Structure of ginsenoside-Rg1, a neutral saponin of ginseng root[J]. Tetrahedron, 1971, 27(5): 881-892. DOI:10.1016/S0040-4020(01)92488-3 |
[15] |
ZHANG J X, TIAN Y, ZHONG X M, et al. Study on saponins chemical components from Aralia elata[J]. China Pharm, 2013, 24(15): 1380-1382. 张家鑫, 田瑜, 钟晓明, 等. 辽东楤木三萜皂苷类化学成分的研究[J]. 中国药房, 2013, 24(15): 1380-1382. DOI:10.6039/j.issn.1001-0408.2013.15.13 |
[16] |
YIN M, WNAG X Y, WANG M, et al. A new triterpenoid saponin and other saponins from Salicornia europaea[J]. Chem Nat Compd, 2012, 48(2): 258-261. DOI:10.1007/s10600-012-0216-2 |
[17] |
ZHU D, WU L, LI C R, et al. Ginsenoside Rg1 protects rat cardiomyocyte from hypoxia/reoxygenation oxidative injury via antioxidant and intracellular calcium homeostasis[J]. J Cell Biochem, 2009, 108(1): 117-124. DOI:10.1002/jcb.22233 |
[18] |
GAO Y, XUE W, LI M, et al. Progress in the study of the central pharmacological effects of ginsenoside Rg1 and multiple target mechanism[J]. Chin J Clin Pharmacol Ther, 2016, 21(1): 107-111. 高妍, 薛薇, 李敏, 等. 人参皂苷Rg1的中枢药理作用及多靶点机制研究进展[J]. 中国临床药理学与治疗学, 2016, 21(1): 107-111. |
[19] |
QU D F, YU H J, LIU Z, et al. Ginsenoside Rg1 enhances immune response induced by recombinant Toxoplasma gondii SAG1 antigen[J]. Vet Parasitol, 2011, 179(1/2/3): 28-34. DOI:10.1016/j.vetpar.2011.02.008 |
[20] |
YANG N, ZHOU B S, WANG Y R, et al. Research progress of the biological activity of the ginsenoside Rg1[J]. China J Trad Chin Med Pharmacy, 2018, 33(4): 1463-1465. 杨娜, 周柏松, 王亚茹, 等. 人参皂苷Rg1生物活性研究进展[J]. 中华中医药杂志, 2018, 33(4): 1463-1465. |
[21] |
WU X J, GUAN Y. Advances in pharmacological activities and mechanism of chikusetsusaponin IVa and its derivatives[J]. Chin Pharm, 2018, 29(18): 2560-2564. 吴忻晶, 关月. 竹节参皂苷Ⅳa及其衍生物的药理活性及作用机制研究进展[J]. 中国药房, 2018, 29(18): 2560-2564. DOI:10.6039/j.issn.1001-0408.2018.18.25 |
[22] |
YU C, FU F H, YU X, et al. Protective effect of ocotillol on acute myocardial injury induced by LAD in rat[J]. J Mol Cell Cardiol, 2007, 42(6S1): S215. DOI:10.1016/j.yjmcc.2007.03.649 |
[23] |
TIAN J W, GENG M Y, FU F H, et al. Inhibitory effects of ocotillol on tumor growth in nude mice bearing human ovarian cancer cells[J]. Anticancer Res, 2004, 24(5D): 3653-3654. |