文章快速检索     高级检索
  热带亚热带植物学报  2020, Vol. 28 Issue (1): 78-83  DOI: 10.11926/jtsb.4087
0

引用本文  

张敏瑜, 王明元, 侯式贞, 等. 接种丛枝菌根真菌对柑橘生长与次生代谢的影响[J]. 热带亚热带植物学报, 2020, 28(1): 78-83. DOI: 10.11926/jtsb.4087.
ZHANG Min-yu, WANG Ming-yuan, HOU Shi-zhen, et al. Effects of Arbuscular Mycorrhizal Fungi on Plant Growth and Secondary Metabolism in Citrus reticulata[J]. Journal of Tropical and Subtropical Botany, 2020, 28(1): 78-83. DOI: 10.11926/jtsb.4087.

基金项目

福建省科技厅高校产学研重大项目(2017N5009);泉州市科技计划项目(2018N003);华侨大学中青年教师科研提升计划(ZQN-YX507)资助

通信作者

王明元,E-mail:w_mingyuan@163.com

作者简介

张敏瑜,研究方向为植物真菌病害和土壤微生物。E-mail:zhangminyu_zmy@126.com

文章历史

收稿日期:2019-04-28
接受日期:2019-07-29
接种丛枝菌根真菌对柑橘生长与次生代谢的影响
张敏瑜 1,2, 王明元 1, 侯式贞 1, 刘建福 1, 林萍 1, 李雨晴 1     
1. 华侨大学园艺科学与工程研究中心, 福建 厦门 361021;
2. 肇庆学院生命科学学院, 广东 肇庆 526061
摘要:为了解丛枝菌根(AM)真菌对根、根系分泌物中次生代谢物和植物生长的影响,以AM真菌(Glomus epigaeum)接种柑橘(Citrus reticulata),对柑橘的酚类物质、抗氧化酶和生长情况进行研究。结果表明,温室盆栽6个月后,接种AM真菌显著提高柑橘酚酸类物质的积累,但是酚酸组分在根和根分泌物中存在差异,根中原儿茶酸和丁香酸含量为29.98和18.32μg/g,分别是未接种的4.58和2.26倍。而根系分泌物中香豆酸、苯甲酸和根皮苷含量为0.36、6.04和12.32 μg/g,分别是未接种的1.71、1.94和1.25倍,而香草醛仅在未接种柑橘根中检测到。接种AM真菌的柑橘苯丙氨酸解氨酶、多酚氧化酶和过氧化物酶活性为38.36、0.51和28.62 U/(g·min),分别是未接种AM真菌的1.99、2.83和3.10倍。同时菌根定殖也显著提高柑橘的株高、茎粗和叶片数。因此,AM真菌定殖能促进植物生长,改变柑橘次生代谢产物的积累。
关键词柑橘    丛枝菌根真菌    生长    次生代谢    
Effects of Arbuscular Mycorrhizal Fungi on Plant Growth and Secondary Metabolism in Citrus reticulata
ZHANG Min-yu 1,2, WANG Ming-yuan 1, HOU Shi-zhen 1, LIU Jian-fu 1, LIN Ping 1, LI Yu-qing 1     
1. Research Center of Horticultural Science and Engineering, Huaqiao University, Xiamen 361021, Fujian, China;
2. College of Life Sciences, Zhaoqing University, Zhaoqing 526061, Guangdong, China
Foundation item: This work was supported by the Special Project on Education and Research of Fujian Province (Grant No. 2017N5009), the Project for Science and Technology in Quanzhou City (Grant No. 2018N003) and the Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University (Grant No. ZQN-YX507)
Abstract: To understand the effect of arbuscular mycorrhizal (AM) fungi on secondary metabolism in root and root exudates and plant growth, Citrus reticulata was inoculated by AM fungus Glomus epigaeum, the phenolic, antioxidant enzyme and growth of C. reticulata were studied. After six months cultured in greenhouse, the concentrations of phenolic acids in C. reticulata inoculated with AM fungus significantly increased. However, the components of phenolic acid were different in root and root exudates, the contents of protocatechunic acid and syringic acid in roots was 29.98 and 18.32 μg/g, which were 4.58 and 2.26 times higher than those in control, respectively. The contents of coumaric acid, benzoic acid and phloridzin were 0.36, 6.04 and 12.32 μg/g, respectively, which were 1.71, 1.94 and 1.25 times higher than those in control. Whereas vanillin was only detected in uninoculated roots. The enzyme activities of phenylalnine ammonia-lyase, polyphenol oxidase and peroxidase in C. reticulata inoculated with AM fungus were 38.36, 0.51 and 28.62 U/(g·min), respectively, which were 1.99, 2.83 and 3.10 times higher than those in control. In addition, the height, stem diameter and leaf number of C. reticulata inoculated with arbuscular mycorrhizal fungi also significantly increased. It was suggested that AM colonization could significantly affected the growth and secondary metabolites in C. reticulata.
Key words: Citrus reticulata    Arbuscular mycorrhizal fungi    Growth    Secondary metabolite    

柑橘是世界上第一大果树,主要分布在南北纬40°内温暖湿润的热带与亚热带区域。中国是柑橘种植的主产区,主要种植于土壤营养匮乏的贫瘠山岭地区。由于柑橘根系根毛少或不生根毛(一般情况下无根毛),柑橘很大程度上要依靠土壤中丛枝菌根(AM)真菌的协作吸收土壤中各种矿物质营养,以促进自身生长[1]

菌根诱导宿主发生错综复杂的代谢变化,代谢产物种类多,数量大,菌根在植物提高自身防御能力、生存竞争、协调与环境关系中发挥着至关重要的作用[2]。酚类化合物广泛存在于植物组织,是植物的重要次生代谢物之一,如黄酮类化合物是植物细胞壁的重要组分,花青素和黄酮醇是茎、叶和其他器官中的着色剂[3]。同时酚类化合物也是一种涉及植物生长、代谢、抗性应激等调节的信号物质[46]。越来越多的证据表明,酚类化合物参与菌根共生形成过程,在增强植物生长和抵抗生物或非生物胁迫方面起着至关重要的作用[78]。黄酮类化合物抑制Glomus margarita孢子的芽管生长[8]。异黄酮类的积累与丛枝发育有关[910],而独脚金内酯对诱导AM真菌的菌丝分枝具有积极作用[11]。同时AM真菌能促进植物的酚类合成[12]Rhizophagus irregularis侵染三色堇(Viola triclor)后,改善了对矿质营养的吸收和激活了系统性防御系统,次生代谢产物羟基苯甲酸和芦丁含量显著增加[13]Glomus mosseae侵染三叶草(Trifolium repens)后,根中H2O2、SA和NO含量升高,继而诱导PAL活性提高和酚类物质含量显著增加[3]。酚类物质是植物次生代谢的主要产物,也是研究最多的一类代谢产物。以往的研究多集中于作物接种AM真菌后的酚酸含量变化,然而AM真菌对柑橘的酚酸代谢研究相对缺乏,因此,本文对菌根柑橘中酚酸组分、PAL、PPO和POD活性变化和柑橘生长情况进行深入研究。

为探究接种AM真菌对宿主植物根和根系分泌物中次生代谢的影响,本试验采用AM真菌G. epi- gaeum接种柑橘。在温室盆栽培养6个月后,检测柑橘的酚类物质变化、抗氧化酶变化和生长情况, 提取菌根柑橘的根和根分泌物的酚类物质和黄酮类物质,采用高效液相色谱法(HPLC)分析6种酚酸组分和含量变化,从而为丛枝菌根真菌改善柑橘生长和物质积累提供理论支撑。

1 材料和方法 1.1 材料

供试基质采用1:3 (V/V)的河沙与珍珠岩混合物,在121℃高压湿热灭菌1 h,取出冷却至室温, 装入14 cm (长)×12 cm (宽)×10 cm (高)的塑料盆里,每盆3 kg。

供试AM真菌为地表球囊霉(Glomus epigaeum),由北京市农林科学院植物营养与资源研究所中国丛枝菌根真菌种质资源库(BGC)提供,菌种编号BGC504,菌剂保存于4℃冰箱中。每盆接种20 g菌剂,含1 450个孢子。

选择颗粒饱满的柑橘(Citrus reticulata)种子用10%的双氧水表面消毒10 min,蒸馏水冲洗数次后,取双层纱布包裹,置于恒温培养箱26℃黑暗条件下催芽。发芽后,将萌芽的种子播种塑料盆中, 每盆4棵,转移至温室,控制夜间/白天温度16℃~18℃/ 26℃~28℃,前两个月每2 d浇1次200 mL蒸馏水。两个月后,每2 d浇1次200 mL pH为6.0的霍格兰营养液。试验设接种与未接种AM真菌2个处理,每处理6个重复。

生长6个月后,测定植物生物量,并采集根系和收集根系分泌物。

1.2 方法

菌根侵染率的测定  取一部分新鲜根,浸泡在FAA固定液中固定24 h。采用Phillips等[14]的方法,检测AM真菌侵染情况,菌根侵染率(%)=AM真菌感染的根段长度/检测根段的总长度×100%。

酶活测定  剪取1 g柑橘根,加入0.2 g石英砂,4 mL 0.1 mol/L的硼酸缓冲液,0.05 g聚吡咯烷酮,冰浴研磨成浆, 10 000×g 4℃离心10 min, 取上清液为待测酶液,参考Zucker[15]的方法测定苯丙氨酸氨解酶(PAL,EC 4.3.1.5)活性;剪取1 g柑橘根,加入预冷的10 mL 20 mmol/L KH2PO2 (pH=6.4)冰浴研磨,10 000×g 4℃离心10 min,多酚氧化酶(PPO, EC 1.10.3.1)活性测定参考Lamikanra等[16]的方法, 过氧化物酶(POD, 1.11.1.7)活性测定参考李合生[17]的方法。

总酚和总黄酮含量测定  柑橘根部冲洗后, 至于60℃烘箱中烘干至恒重,研磨至粉末状,过40目筛之后,称取约1 g,加入15 mL 50 %甲醇, 用超声提取30 min。10 000×g 25℃离心10 min,取上清液作为根部提取液。按Koivikko等[18]的Folin- Ciocalteu法测量总酚含量。按Meda等[19]的方法测定总黄酮含量。

酚类化合物含量测定  根分泌物按Badri等[20]和Micallef等[21]的方法收集,用去离子水冲洗柑橘根系,振荡1.5 h,离心,取上清液即为根系分泌物。按Parejo等[22]的方法提取根中的酚酸,将分泌液调整pH至1.5,加入100 mL的乙酸乙酯萃取3次, 合并有机层,旋转蒸发至干,用1 mL的色谱级甲醇溶解,在–20℃放置12 h,过0.45 μm滤膜,将收集液作为根系分泌物待测液,–20℃冰箱储存备用。在测定酚酸之前,将根和根分泌物的提取物通过0.22 μm微孔滤膜过滤。通过HPLC (Inertsil-ODS, 日本)测量6种酚酸的含量,即原儿茶酸、丁香酸、香草醛、香豆酸、苯甲酸和根皮苷。分析条件[23]:色谱柱:XDB-C18 (250 mm×4.6 mm,5 μm),柱温:35℃;流速:1.0 mL/min,检测器波长;280 nm; 进样量:10 μL;流动相:甲醇(A)和0.2% (V/V)乙酸溶液(B);梯度洗脱(B: 100% (0 min)→72% (10 min)→ 62% (35 min)→50% (58 min)→45% (60 min)→结束(65 min)。酚酸按照色谱法[24]鉴定, 通过比较峰与出峰时间、标准酚酸曲线。

1.3 数据统计分析

所有数据使用SPSS 19.0统计软件,采用Student- test分析方法进行检验处理间差异显著性,P < 0.05表示差异显著。

2 结果和分析 2.1 接种AM真菌对生长的影响

盆栽培养6个月后,接种AM真菌处理的柑橘植株在株高、茎粗和叶片数上均有显著提高,分别是对照组的1.35、1.19和1.32倍(表 1)。另外,接种AM真菌的柑橘单株地上部和地下部生物量分别为1.78和0.75 g。这说明接种AM真菌能显著促进柑橘的生长。

表 1 接种AM真菌对柑橘幼苗生长的影响 Table 1 Effect of AM fungus inoculation on growth of Citrus reticulata seedlings
2.2 接种AM真菌对根部的侵染

盆栽培养6个月后,接种AM真菌处理的柑橘植株均可检测到菌根侵染,侵染率为56.38%,菌丝密度为4.86 m/g,未接种柑橘则未检测出菌根侵染。这说明AM真菌Glomus epigaeum对柑橘侵染能力强,能在柑橘根系中形成丰富的菌丝结构,有利于促进植物的生长。

2.3 接种AM真菌对酚酸的影响

本文共检测6种酚酸,结果表明,接种与未接种AM真菌柑橘的酚酸组分存在差异。香草醛(7.64 μg/g)仅在未接种的柑橘根部检测到,而接种AM真菌的柑橘中未发现(表 2)。接种AM真菌柑橘中的其他5种酚类(原儿茶酸、丁香酸、香豆酸、苯甲酸和根皮苷)含量均显著高于非未接种的。原儿茶酸含量最高,原儿茶酸和丁香酸仅存在于根中,含量分别是未接种的4.58和2.26倍。而香豆酸、苯甲酸和根皮苷仅存在于根系分泌物中,含量分别是未接种的1.71、1.94和1.25倍。这说明接种AM真菌能显著提高柑橘酚类物质的积累,但酚酸的种类在根部和根系分泌物中存在差异。

表 2 接种AM真菌对柑橘幼苗根及根系分泌物酚类物质的影响 Table 2 Effects of AM fungus on phenolics in roots and roots exudates in Citrus reticulata
2.4 接种AM真菌对PAL、PPO和POD活性的影响

接种AM真菌与未接种柑橘的PAL、PPO和POD活性存在显著差异。接种AM真菌柑橘的PAL、PPO和POD的最大活性分别为38.36、0.51和28.62 U/(g·min),是未接种处理的1.98、2.83和3.10倍(表 3)。这说明接种AM真菌能显著提高柑橘的PAL、PPO和POD活性。

表 3 接种AM真菌对柑橘根PAL、PPO和POD活性[U/(g·min)]的影响 Table 3 Effect of AM fungus on activites [U/(g·min)] of POD, PPO and PAL in Citrus reticulata roots
2.5 接种AM真菌对总酚和总黄酮含量的影响

接种AM真菌能显著提高柑橘中总酚和总黄酮含量(表 4)。接种AM真菌柑橘根和根系分泌物中总酚含量分别是对照的1.43和1.57倍,总黄酮含量分别是对照的1.86和1.44倍。总酚的积累在根和根系分泌物中的差异显著,根系分泌物中的总酚含量是根中的70.82倍,说明AM真菌在柑橘根系中的定殖能显著提高柑橘根中总酚的积累,同时诱导根系分泌更多酚类物质。

表 4 接种AM真菌对柑橘根和系分泌物中总酚和总黄酮含量的影响 Table 4 Effects of AM fungus on total phenics and total flavonoids content in roots and root exudate of Citrus reticulata
3 讨论

在本研究中,接种AM真菌的柑橘植株发生复杂的生理生化变化,其次生代谢物质总酚含量显著增加,可能机制是AM真菌对植物的侵染相当于一种可以刺激植物防御反应的损伤。植物对AM真菌的应激反应较弱,并不如病原菌的入侵强烈[25]。AM真菌定殖后,与胁迫生理密切相关的重要信号分子如H2O2含量增加,刺激抗性基因的高表达并诱导进一步的抗性反应,相关的抗氧化酶如SOD、GPX和CAT活性随之提高[26]。在防御反应过程中次生代谢物将受到影响,如几丁质、黄酮类物质和植物抗毒素的积累增加。本研究结果表明,接种AM真菌柑橘根部的抗氧化酶PPO和POD活性显著提高,这是柑橘抗衡H2O2增加的自我保护反应。研究表明,酚类物质的增加与H2O2、SA和NO等相关信号分子的释放有关[13],能诱导植物抗性酶(如PAL、SOD、POD、CHS、NOS和CAT)活性增强。此外,PAL又是酚类物质合成中的关键酶和中心酶,最终导致酚类在根中积累,有效缓解外来入侵产生的氧化损伤。

植物次生代谢离不开生物酶的参与。本研究中AM真菌G. epigaeum侵染显著提高了柑橘根的PAL、PPO和POD活性。PAL是催化苯丙烷途径的第一步,产生各种重要次级代谢物的前体[27]。PPO是一种分布广泛的酶,与生物活性和多酚含量有密切关系,PPO通常催化木质素和酚的形成[28]。POD涉及硝酸代谢和木质素转化。本研究结果表明,柑橘菌根中PAL、PPO和POD活性均高于对照组,因此,酚酸的增加是AM真菌定殖下植物酶积累的综合结果。

酚酸类物质可以调节植物-微生物的相互作用,是植物防御反应系统的重要组成部分[13]。当AM真菌侵染根时,可以激活植物防御反应,PAL活性显著提高。PAL能加快莽草酸途径中酚类化合物的合成速率,从而酚类物质显著增加。酚类化合物在植物生理活动中主要发挥其抗氧化活性,减缓细胞老化,保护细胞免受损伤的功能。另外,AM真菌能够诱导柑橘根系分泌出更多的有机小分子酚酸物质,改变植物根系微生物环境,在抗胁迫环境中起到重要作用。菌根诱导下的柑橘根系分泌物也可以改善土壤pH或螯合土壤难溶性养分来促进植物的生长发育[29]

在本研究中,AM真菌G. epigaeum能诱导柑橘中酚酸的产生。有许多研究表明AM真菌定殖可以增强酚酸的产生[12, 3031]。香草醛作为一种酚酸类物质,本试验中仅在未接种AM真菌的柑橘中检测到。香草醛是广泛使用的调味物质之一[32],但其对植物有生物毒性[32]。AM真菌存在下,香草醛的合成可能被抑制,继而促进宿主植物更好地生长[34],但具体的机理还需进一步研究。

本研究中,柑橘次级代谢产物的增加可能是营养物质积累、酶活性提高和酚类前体增加的共同结果,这为阐明菌根定殖对柑橘酚类物质次生代谢的影响提供了定量证据,但更多的酚酸诱导机理还需深入研究。

参考文献
[1]
WU Q S, ZOU Y N. New advances in the research of arbuscular mycorrhizas in citrus[J]. Acta Agric Univ Jiangxi, 2014, 36(2): 279-284.
吴强盛, 邹英宁. 柑橘丛枝菌根的研究新进展[J]. 江西农业大学学报, 2014, 36(2): 279-284. DOI:10.13836/j.jjau.2014044
[2]
YAN X F, WANG Y, LI Y M. Plant secondary metabolism and its response to environment[J]. Acta Ecol Sin, 2007, 27(6): 2554-2562.
阎秀峰, 王洋, 李一蒙. 植物次生代谢及其与环境的关系[J]. 生态学报, 2007, 27(6): 2554-2562. DOI:10.3321/j.issn:1000-0933.2007.06.050
[3]
ZHANG R Q, ZHU H H, ZHAO H Q, et al. Arbuscular mycorrhizal fungal inoculation increases phenolic synthesis in clover roots via hydrogen peroxide, salicylic acid and nitric oxide signaling pathways[J]. J Plant Physiol, 2013, 170(1): 74-79. DOI:10.1016/j.jplph.2012.08.022
[4]
GUPTA M, SHARMA P, MAZUMDER A G, et al. Dwindling of cardio damaging effect of isoproterenol by Punica granatum L. peel extract involve activation of nitric oxide-mediated Nrf2/ARE signaling path-way and apoptosis inhibition[J]. Nitric Oxide, 2015, 50: 105-113. DOI:10.1016/j.niox.2015.09.002
[5]
DAS J, RAMANI R, SURAJU M O. Polyphenol compounds and PKC signaling[J]. Biochim Biophys Acta Gen Subj, 2016, 1860(10): 2107-2121. DOI:10.1016/j.bbagen.2016.06.022
[6]
GARG N, SINGLA P. Stimulation of nitrogen fixation and trehalose biosynthesis by naringenin (Nar) and arbuscular mycorrhiza (AM) in chickpea under salinity stress[J]. Plant Growth Regul, 2016, 80(1): 5-22. DOI:10.1007/s10725-016-0146-2
[7]
MAILLET F, POINSOT V, ANDRÉ O, et al. Fungal lipochitooligo-saccharide symbiotic signals in arbuscular mycorrhiza[J]. Nature, 2011, 469(7328): 58-63. DOI:10.1038/nature09622
[8]
NADEEM S M, AHMAD M, ZAHIR Z A, et al. The role of mycor-rhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments[J]. Biotechnol Adv, 2014, 32(2): 429-448. DOI:10.1016/j.biotechadv.2013.12.005
[9]
HARRISON M J, DIXON R A. Spatial patterns of expression of flavonoid/isoflavonoid pathway genes during interactions between roots of Medicago truncatula and the mycorrhizal fungus Glomus versiforme[J]. Plant J, 1994, 6(1): 9-20. DOI:10.1046/j.1365-313X.1994.6010009.x
[10]
MANDAL S M, CHAKRABORTY D, DEY S. Phenolic acids act as signaling molecules in plant-microbe symbioses[J]. Plant Signal Behav, 2010, 5(4): 359-368. DOI:10.4161/psb.5.4.10871
[11]
AKIYAMA K, TANIGAWA F, KASHIHARA T, et al. Lupin pyrano-isoflavones inhibiting hyphal development in arbuscular mycorrhizal fungi[J]. Phytochemistry, 2010, 71(16): 1865-1871. DOI:10.1016/j.phytochem.2010.08.010
[12]
MECHRI B, TEKAYA M, CHEHEB H, et al. Accumulation of flavor-noids and phenolic compounds in olive tree roots in response to mycor-rhizal colonization:A possible mechanism for regulation of defense molecules[J]. J Plant Physiol, 2015, 185: 40-43. DOI:10.1016/j.jplph.2015.06.015
[13]
ZUBEK S, ROLA K, SZEWCZYK A, et al. Enhanced concentrations of elements and secondary metabolites in Viola tricolor L. induced by arbuscular mycorrhizal fungi[J]. Plant Soil, 2015, 390(1/2): 129-142. DOI:10.1007/s11104-015-2388-6
[14]
PHILLIPS J M, HAYMAN D S. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection[J]. Trans Br Mycol Soc, 1970, 55(1): 158-161. DOI:10.1016/S0007-1536(70)80110-3
[15]
LI H S. Principles and Techniques of Plant Physiological Biochemical Experiment[M]. Beijing: Higher Education Press, 2000: 164-165.
李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000: 164-165.
[16]
ZUCKER M. Induction of phenylalanine deaminase by light and its relation to chlorogenic acid synthesis in potato tuber tissue[J]. Plant Physiol, 1965, 40(5): 779-784. DOI:10.1104/pp.40.5.779
[17]
AND O L, WATSON M A. Effects of ascorbic acid on peroxidase and polyphenoloxidase activities in fresh-cut cantaloupe melon[J]. J Food Sci, 2001, 66(9): 1283-1286. DOI:10.1111/j.1365-2621.2001.tb15202.x
[18]
KOIVIKKO R, LOPONEN J, HONKANEN T, et al. Contents of soluble, cell-wall-bound and exuded phlorotannins in the brown alga Fucus vesiculosus, with implications on their ecological functions[J]. J Chem Ecol, 2005, 31(1): 195-212. DOI:10.1007/s10886-005-0984-2
[19]
MEDA A, LAMIEN C E, ROMITO M, et al. Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity[J]. Food Chem, 2005, 91(3): 571-577. DOI:10.1016/j.foodchem.2004.10.006
[20]
BADRI A, STEFANI F O P, LACHANCE G, et al. Molecular diagnostic toolkit for Rhizophagus irregularis isolate DAOM-197198 using quantitative PCR assay targeting the mitochondrial genome[J]. Mycorrhiza, 2016, 26(7): 721-733. DOI:10.1007/s00572-016-0708-1
[21]
MICALLEF S A, SHIARIS M P, COLÓN-CARMONA A. Influence of Arabidopsis thaliana accessions on rhizobacterial communities and natural variation in root exudates[J]. J Exp Bot, 2009, 60(6): 1729-1742. DOI:10.1093/jxb/erp053
[22]
PAREJO I, VILADOMAT F, BASTIDA J, et al. Comparison between the radical scavenging activity and antioxidant activity of six distilled and nondistilled mediterranean herbs and aromatic plants[J]. J Agric Food Chem, 2002, 50(23): 6882-6890. DOI:10.1021/jf020540a
[23]
ZHOU J H, LI Y, ZHAO J, et al. Geographical traceability of propolis by high-performance liquid-chromatography fingerprints[J]. Food Chem, 2008, 108(2): 749-759. DOI:10.1016/j.foodchem.2007.11.009
[24]
IGNAT I, VOLF I, POPA V I. A critical review of methods for charac-terisation of polyphenolic compounds in fruits and vegetables[J]. Food Chem, 2011, 126(4): 1821-1835. DOI:10.1016/j.foodchem.2010.12.026
[25]
LIU R J, CHEN Y L. Mycorrhizology[M]. Beijing: Science Press, 2007: 168-170.
刘润进, 陈应龙. 菌根学[M]. 北京: 科学出版社, 2007: 168-170.
[26]
LAMBAIS M R, RÍOS-RUIZ W F, ANDRADE R M. Antioxidant responses in bean (Phaseolus vulgaris) roots colonized by arbuscular mycorrhizal fungi[J]. New Phytol, 2003, 160(2): 421-428. DOI:10.1046/j.1469-8137.2003.00881.x
[27]
HUANG J L, GU M, LAI Z B, et al. Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress[J]. Plant Physiol, 2010, 153(4): 1526-1538. DOI:10.1104/pp.110.157370
[28]
MOHAMMADI M, KAZEMI H. Changes in peroxidase and poly-phenol oxidase activities in susceptible and resistant wheat heads inoculated with Fusarium graminearum and induced resistance[J]. Plant Sci, 2002, 162(4): 491-498. DOI:10.1016/s0168-9452(01)00538-6
[29]
SHEN J B, ZHANG F S. Ecological effect of root exudates[J]. Rev China Agric Sci Technol, 1999, 1(4): 21-27.
申建波, 张福锁. 根分泌物的生态效应[J]. 中国农业科技导报, 1999, 1(4): 21-27. DOI:10.3969/j.issn.1008-0864.1999.04.005
[30]
PEDONE-BONFIM M V L, LINS M A, COELHO I R, et al. Mycorr-hizal technology and phosphorus in the production of primary and secondary metabolites in cebil[Anadenanthera colubrina (Vell.) Brenan] seedlings[J]. J Sci Food Agric, 2013, 93(6): 1479-1484. DOI:10.1002/jsfa.5919
[31]
ZHU H H, ZHANG R Q, CHEN W L, et al. The possible involvement of salicylic acid and hydrogen peroxide in the systemic promotion of phenolic biosynthesis in clover roots colonized by arbuscular mycorr-hizal fungus[J]. J Plant Physiol, 2015, 178: 27-34. DOI:10.1016/j.jplph.2015.01.016
[32]
NI J, FEI T, DU H Q, et al. Mimicking a natural pathway for de novo biosynthesis:Natural vanillin production from accessible carbon sources[J]. Sci Rep, 2015, 5(1): 13670. DOI:10.1038/srep13670
[33]
SHALABY S, HORWITZ B A. Plant phenolic compounds and oxide-tive stress:Integrated signals in fungal-plant interactions[J]. Curr Genet, 2015, 61(3): 347-357. DOI:10.1007/s00294-014-0458-6
[34]
TANAKA S, BREFORT T, NEIDIG N, et al. A secreted Ustilago maydis effector promotes virulence by targeting anthocyanin biosynthesis in maize[J]. eLife, 2013, 3: e1355. DOI:10.7554/eLife.01355