文章快速检索     高级检索
  热带亚热带植物学报  2018, Vol. 26 Issue (3): 317-322  DOI: 10.11926/jtsb.3820
0

引用本文  

刘文斌, 董丽梅, 罗碧, 等. 青钱柳叶的化学成分研究[J]. 热带亚热带植物学报, 2018, 26(3): 317-322. DOI: 10.11926/jtsb.3820.
LIU Wen-bin, DONG Li-mei, LUO Bi, et al. Chemical Constituents from the Leaves of Cyclocarya paliurus[J]. Journal of Tropical and Subtropical Botany, 2018, 26(3): 317-322. DOI: 10.11926/jtsb.3820.

基金项目

国家自然科学基金项目(31470422);广东省自然科学基金项目(2014A030313742)资助

通信作者

谷文祥.E-mail:jwtan@scau.edu.cn 谭建文.E-mail:wenxgu@scau.edu.cn

作者简介

刘文斌(1992~), 男, 在读硕士研究生, 主要研究方向为天然产物化学。E-mail:liuwenbin15@mails.ucas.ac.cn

文章历史

收稿日期:2017-09-12
接受日期:2017-11-01
青钱柳叶的化学成分研究
刘文斌 1a,2,3, 董丽梅 1a, 罗碧 2,3, 张强 2,3, 谷文祥 1b, 谭建文 1a     
1a. 华南农业大学, 林学与风景园林学院, 广州 510642;
1b. 华南农业大学, 材料与能源学院, 广州 510642;
2. 中国科学院华南植物园, 广东省应用植物学重点实验室, 广州 510650;
3. 中国科学院大学, 北京 100049
摘要:为了解青钱柳(Cyclocarya paliurus)叶中的化学成分,从其叶的95%乙醇提取物中分离得到了12个化合物。经波谱分析分别鉴定为:姜酮(1)、咖啡酸甲脂(2)、柚皮素(3)、阿江榄仁酸(4)、1-氧代-3β,23-二羟基齐墩果酸(5)、2α-羟基熊果酸(6)、山柰酚(7)、槲皮素(8)、山柰酚-3-O-(3-O-乙酰基-α-l-吡喃鼠李糖苷)(9)、木犀草素(10)、1-氧代-3β,23-二羟基齐墩果酸-28-O-β-d-吡喃葡萄糖苷(11)、阿福豆苷(12)。化合物125911为首次从青钱柳中分离得到。
关键词青钱柳        化学成分    
Chemical Constituents from the Leaves of Cyclocarya paliurus
LIU Wen-bin 1a,2,3, DONG Li-mei 1a, LUO Bi 2,3, ZHANG Qiang 2,3, GU Wen-xiang 1b, TAN Jian-wen 1a     
1a. College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China;
1b. College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China;
2. Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;
3. University of Chinese Academy of Sciences, Beijing 100049, China
Foundation item: This work was supported by the National Natural Science Foundation of China (Grant No. 31470422), and the Natural Science Foundation in Guangdong(Grant No. 2014A030313742)
Abstract: In order to understand the chemical constituents of Cyclocarya paliurus, twelve compounds were isolated from the 95% ethanol extract of its leaves. On the basis of spectral data, they were identified as zingerone (1), caffeic acid methyl ester (2), naringenin (3), arjunolic acid (4), 1-oxo-3β, 23-dihydroxyolean-12-en-28-oic acid (5), 2α-hydroxyursolic acid (6), kaempferol (7), quercetin (8), kaempferol-3-O-(3-O-acetyl-α-l-rhamnopyranoside) (9), luteolin (10), 1-oxo-3β, 23-dihydroxyolean-12-en-28-oic acid 28-O-β-d-glucopyranoside (11) and afzelin (12). Compounds 1, 2, 5, 9 and 11 were obtained from this plant species for the first time.
Key words: Cyclocarya paliurus    Leaf    Chemical constituent    

青钱柳(Cyclocarya paliurus),又称青钱李、摇钱树等,系胡桃科(Juglaruiaceae)青钱柳属植物,是中国特有的单种属植物,也是国家重点保护的濒危植物之一。青钱柳是一种高大速生乔木,奇数羽状复叶,广泛分布于江西、浙江、江苏、安徽、福建、台湾、湖南、湖北、四川、贵州等地, 海拔420~2 500 m的山区、溪谷或石灰岩山地[1]。其适应性强,可耐低温和高温。江西省农牧厅、江西省蚕桑茶叶研究所在进行农业资源调查时,发现生活在江西部分山区有很多长寿老人,他们的饮食习惯中有个共同的特点,就是经常以一种当地特有的植物叶子泡茶饮用,该植物经庐山植物园专家鉴定为青钱柳。目前针对青钱柳功能活性成分的研究主要围绕着其树叶展开。在天然活性成分方面已报道有机酸、黄酮及苷类、萜类及甾体类等类型的多种化学成分[2-6];从药理活性方面阐述了青钱柳具有降血糖、降血压、降血脂、增强免疫、抗氧化、抗衰老等功能[7],尤其在降血糖方面具有独特的功效。最新研究表明青钱柳中的三萜类化合物具有良好的降血脂作用[8], 通过这一作用来抑制心血管疾病和糖尿病等并发症。我们对青钱柳叶进行化学成分研究,从中分离纯化了12种化学成分,其中5个为首次从该植物中分离得到。

1 材料和方法 1.1 材料和仪器

实验中所用试剂(无水乙醇、三氯甲烷、甲醇、乙酸乙酯等)为广州试剂二厂和天津富宇试剂公司生产,均为分析纯,氘带甲醇为美国Sigma公司生产;色谱纯甲醇,超纯水。

柱色谱正相色谱硅胶为青岛海洋化工有限公司产品(80~100目,200~300目);薄层色谱正相硅胶板为山东烟台江友硅胶开发有限公司产品;凝胶Sephadex LH-20为瑞典Amersham Biosciences公司生产。

岛津LC-20AT型高效液相色谱仪(日本):岛津LC-20AT二元高压泵,SPD-M20A检测器,柱温箱,LC solution色谱工作站;SB-5299DT超声波清洗机;粉碎机,BSA224S赛多利斯电子分析天平(德国); 瑞士布琦公司V-850旋转蒸发仪;中压半制备采用上海利穗科技有限公司的DR Flash-S分离纯化系统。1H和13C NMR谱采用Bruker DRX-500核磁共振仪; 电喷雾质谱(ESI MS)采用MDS SCIEX API 2000 LC/MS/MS仪。

青钱柳(Cyclocarya paliurus)样品采自湖南张家界桑植县八大公山镇内半坡村,干样品总重10 kg。

1.2 提取和分离

青钱柳叶(干重10 kg)粉碎后用95%的乙醇水浸提3次,每次24 h,合并提取液,经减压浓缩将提取液中乙醇抽干后加适量水使其成为混悬液,依次用石油醚、乙酸乙酯进行萃取,各萃取3次;减压浓缩后分别得到石油醚部分、乙酸乙酯部分(780 g)。

将乙酸乙酯萃取部分经正相硅胶柱色谱(200~ 300目),以三氯甲烷-甲醇(100:1,95:5,90:10,85:15,75:25,70:30,60:40,0:100)梯度洗脱,经TLC薄层色谱检测合并主点相同的流分,得到13个组分E1~E13。E3 (8 g)经中压液相色谱分离,以甲醇-水(40:100~100:0)梯度洗脱,利用TLC检测合并主点相同的流分,得到19个亚组分E3-1~E3-20。E3-1经Sephadex LH-20柱色谱,以三氯甲烷-甲醇(1:1)洗脱,再经正相硅胶柱色谱, 以三氯甲烷-甲醇(99:1)洗脱得到化合物1 (5 mg)。E5 (20 g)经中压液相色谱分离,以甲醇-水(45:100~100:0)梯度洗脱,利用TLC检测合并主点相同的流分,得到19个亚组分E5-1~E5-19。E5-3经Sephadex LH-20柱色谱,以三氯甲烷-甲醇(1:4)洗脱,再经正相硅胶柱色谱,以三氯甲烷-甲醇(96:4)洗脱得到化合物2 (8 mg)。E5-6经Sephadex LH-20柱色谱,以三氯甲烷-甲醇(1:4)洗脱,再经正相硅胶柱色谱,以三氯甲烷-甲醇(96:4)洗脱得到化合物3 (10 mg)。E5-12经Sephadex LH-20柱色谱,以三氯甲烷-甲醇(1:4)洗脱,再经正相硅胶柱色谱, 以三氯甲烷-甲醇(96:4)洗脱得到化合物4 (22 mg)和5 (24 mg)。E5-17经Sephadex LH-20柱色谱,以三氯甲烷-甲醇(1:4)洗脱,再经正相硅胶柱色谱, 以三氯甲烷-甲醇(96:4)洗脱得到化合物6 (11 mg)。E6 (15 g)经中压液相色谱分离,以甲醇-水(45:100~100:0)梯度洗脱,利用TLC检测合并主点相同的流分,得到12个亚组分E6-1~E6-20。E6-9经Sephadex LH-20柱色谱,以三氯甲烷-甲醇(1:4)洗脱,再经正相硅胶柱色谱,以三氯甲烷-甲醇(92:8)洗脱得到化合物7 (13 mg)。E7 (25 g)经中压液相色谱分离,以甲醇-水(60:100~100:0)梯度洗脱, 利用TLC检测合并主点相同的流分,得到12个亚组分E7-1~E7-14。E7-2经Sephadex LH-20柱色谱,以三氯甲烷-甲醇(1:4)洗脱,得到化合物8 (11 mg)。E7-3经Sephadex LH-20柱色谱,以三氯甲烷-甲醇(1:4)洗脱,得到化合物9 (11 mg)和10(10 mg)。E8 (24 g)经中压液相色谱分离,以甲醇-水(60:100~100:0)梯度洗脱, 利用TLC检测合并主点相同的流分,得到12个亚组分E8-1~E8-12。E8-5经Sephadex LH-20柱色谱,以三氯甲烷-甲醇(1:4)洗脱,再经正相硅胶柱色谱,以三氯甲烷-甲醇(92:8)洗脱得到化合物11 (3.4 mg)。E10 (2 g)经Sephadex LH-20柱色谱,以三氯甲烷-甲醇(1:4)洗脱,再经正相硅胶柱色谱,以三氯甲烷-甲醇(92:8)洗脱得到化合物12 (105.2 mg)。

1.3 结构鉴定

化合物1  白色粉末;分子式为C11H14O3; ESIMS m/z: 217 [M + Na]+, 193 [M – H]; 1H NMR (500 MHz, CD3OD):δ 6.77 (d, J = 1.9 Hz, 1H, H-6), 6.69 (d, J = 8.0 Hz, 1H, H-9), 6.61 (dd, J = 8.0, 1.9 Hz, 1H, H-10), 3.83 (s, 3H, OCH3-7), 2.77 (s, 4H, H-3, 4), 2.12 (s, 3H, CH3-1); 13C NMR (125 MHz, CD3OD): δ 30.0 (C-1), 211.4 (C-2), 30.5 (C-3), 46.2 (C-4), 134.0 (C-5), 113.1 (C-6), 148.9 (C-7), 145.8 (C-8), 116.2 (C- 9), 121.7 (C-10), 56.4 (OCH3-7)。上述数据与文献[9]报道一致,鉴定该化合物为姜酮。

化合物2  白色晶体;分子式为C10H10O4; ESIMS m/z: 217 [M+ Na]+, 193 [M – H]; 1H NMR (500 MHz, CD3OD):δ 7.57 (d, J = 15.9 Hz, 1H, H-8), 7.06 (d, J = 2.1 Hz, 1H, H-2), 6.97 (dd, J = 8.2, 2.0 Hz, 1H, H-6), 6.80 (d, J = 8.2 Hz, 1H, H-5), 6.29 (d, J = 15.9 Hz, 1H, H-7), 3.78 (s, 3H, COOCH3); 13C NMR (125 MHz, CD3OD): δ 127.7 (C-1), 114.9 (C-2), 146.9 (C-3), 149.6 (C-4), 115.1 (C-5), 122.9 (C-6), 146.8 (C-7), 116.5 (C-8), 169.8 (C-9), 52.0 (C-10)。上述数据与文献[10]报道一致,鉴定该化合物为咖啡酸甲脂。

化合物3  黄色粉末;分子式为C15H10O5; ESIMS m/z: 272 [M – H]; 1H NMR (500 MHz, CD3OD): δ 7.30 (d, J = 8.5 Hz, 2H, H-2′, 6′), 6.82 (d, J = 8.6 Hz, 2H, H-3′, 5′), 5.89 (dd, J = 6.1, 2.1 Hz, 2H, H-8, 6), 5.32 (dd, J = 12.9, 2.9 Hz, 1H, H-2), 3.10 (dd, J = 17.1, 13.0 Hz, 1H, H-3α), 2.68 (dd, J = 17.1, 3.0 Hz, 1H, H-3β); 13C NMR (125 MHz, CD3OD): δ 80.5 (C-2), 44.0 (C-3), 197.8 (C-4), 164.9 (C-5), 97.1 (C-6), 168.3 (C-7), 96.2 (C-8), 165.5 (C-9), 103.4 (C-10), 131.1 (C-1′), 129.0 (C-2′), 166.3 (C-3′), 148.8 (C-4′), 116.3 (C-5′), 116.3 (C-6′)。上述数据与文献[11]报道一致,鉴定该化合物为柚皮素。

化合物4  白色粉末;分子式为C30H48O5; ESIMS m/z: 511 [M + Na]+, 487 [M – H]; 1H NMR (500 MHz, CD3OD):δ 5.24 (t, J = 3.6 Hz, 1H, H-12), 3.68 (ddd, J = 4.5, 3.0, 4.4 Hz, 1H, H-2), 3.48 (d, J = 11.09 Hz, 1H, H-23a), 3.34 (d, J = 9.7, Hz, 1H,H-3), 3.25 (d, J = 11.0 Hz, 1H,H-23b), 2.84 (dd, J = 13.7, 4.2 Hz, 1H,H-18), 1.17 (s, 3H, CH3-27), 1.02 (m, 1H, CH3-25), 0.92 (d, J = 9.4 Hz, 2H, CH3-30), 0.90 (s, 3H,CH3-29), 0.81 (s, 2H, CH3-26), 0.69 (s, 3H, CH3- 24); 13C NMR (125 MHz, CD3OD): δ 47.9 (C-1), 69.7 (C-2), 78.2 (C-3), 44.1 (C-4), 48.2 (C-5), 19.1 (C-6), 33.8 (C-7), 40.6 (C-8), 49.0 (C-9), 39.0 (C-10), 24.0 (C-11), 123.4 (C-12), 145.4 (C-13), 43.0 (C-14), 28.8 (C-15), 24.6 (C-16), 47.6 (C-17), 42.7 (C-18), 47.2 (C-19), 31.6 (C-20), 34.9 (C-21), 33.3 (C-22), 66.3 (C-23), 13.9 (C-24), 17.5 (C-25), 17.8 (C-26), 26.5 (C-27), 181.8 (C-28), 33.6 (C-29), 24.0 (C-30)。上述数据与文献[12]报道一致,鉴定该化合物为阿江榄仁酸。

化合物5  白色粉末;分子式为C30H46O5; ESIMS m/z: 509 [M + Na]+, 485 [M – H]; 1H NMR (500 MHz, CD3OD):δ 5.22 (d, J = 4.2 Hz, 1H, H-12), 3.80 (dd, J = 12.1, 4.9 Hz, 1H, H-3), 3.49 (d, J = 11.2 Hz, 1H,H-23a), 3.31 (d, J = 10.1 Hz, 1H,H-23b), 3.09 (t, J = 12.0 Hz, 1H, H-2), 2.84 (dd, J = 13.8, 3.9 Hz, 1H, H-18), 1.34 (s, 3H, CH3-25), 1.18 (s, 3H, CH3-27), 0.94 (s, 3H, CH3-30), 0.91 (s, 3H, CH3-29), 0.87 (s, 3H, CH3-26), 0.86 (s, 3H, CH3-24);13C NMR (125 MHz, CD3OD): δ 215.0 (C-1), 44.7 (C-2), 73.4 (C-3), 44.1 (C-4), 47.8 (C-5), 18.5 (C-6), 33.4 (C-7), 40.4 (C-8), 40.4 (C-9), 53.3 (C-10), 26.3 (C-11), 124.0 (C-12), 144.6 (C-13), 43.2 (C-14), 28.8 (C-15), 24.1 (C-16), 47.8 (C-17), 43.2 (C-18), 47.0 (C-19), 31.6 (C-20), 34.9 (C-21), 33.8 (C-22), 65.9 (C-23), 13.3 (C-24), 16.0 (C-25), 18.4 (C-26), 26.3 (C-27), 181.9 (C-28), 33.6 (C-29), 24.0 (C-30)。上述数据与文献[13-14]报道一致,鉴定该化合物为1-氧代-3β, 23-二羟基齐墩果酸。

化合物6  白色粉末;分子式为C30H48O4; ESIMS m/z: 495 [M + Na]+,471 [M – H]; 1H NMR (600 MHz, DMSO-d6): δ 11.95 (s, 1H, COOH-28), 5.14 (t, J = 3.4 Hz, 1H, H-12), 4.38 (d, J = 4.1 Hz, 1H, H-3), 4.26 (d, J = 4.3 Hz, 1H, H-2), 3.42 (t, J = 10.0 Hz, 1H, H-18), 2.74 (dd, J = 9.3, 4.1 Hz, 1H, H-19), 2.11 (d, J = 11.3 Hz, 1H, H-20), 1.04 (s, 3H, CH3-23), 0.92 (s, 3H, CH3-26), 0.92 (s, 3H, CH3-27), 0.91 (d, J = 8.9 Hz, 3H, CH3-30), 0.82 (d, J = 6.4 Hz, 3H, CH3-29), 0.74 (s, 3H, CH3-24), 0.70 (s, 3H, CH3-25); 13C NMR (150 MHz, DMSO-d6):δ 46.7 (C-1), 67.1 (C-2), 82.2 (C-3), 38.8 (C-4), 54.7 (C-5), 17.9 (C-6), 32.5 (C-7), 49.1 (C-8), 47.0 (C-9), 37.5 (C-10), 22.8 (C-11), 124.4 (C-12), 138.1 (C-13), 41.6 (C-14), 27.4 (C-15), 23.7 (C-16), 46.9 (C-17), 52.3 (C-18), 38.4 (C-19), 38.3 (C-20), 30.1 (C-21), 36.2 (C-22), 28.7 (C-23), 16.8 (C-24), 16.3 (C-25), 17.0 (C-26), 23.2 (C-27), 178.0 (C-28), 16.8 (C-29), 20.9 (C-30)。上述数据与文献[15]报道一致,鉴定该化合物为2α-羟基熊果酸。

化合物7  黄色晶体;分子式为C15H10O6; ESIMS m/z: 309 [M + Na]+, 285 [M – H]; 1H NMR (600 MHz, CD3OD): δ 8.05 (d, J = 8.9 Hz, 1H, H-2′, 6′), 6.88 (d, J = 9.0 Hz, 1H, H-3′, 5′), 6.36 (d, J = 2.1 Hz, 1H, H-8), 6.16 (d, J = 2.1 Hz, 1H, H-6); 13C NMR (150 MHz, CD3OD): δ 148.0 (C-2), 137.1 (C-3), 177.3 (C-4), 158.2 (C-5), 99.3 (C-6), 165.5 (C-7), 94.5 (C-8), 162.5 (C-9), 104.5 (C-10), 123.7 (C-1′), 130.6 (C-2′), 116.3 (C-3′), 160.5 (C-4′), 116.3 (C-5′), 130.6 (C-6′)。上述数据与文献[16]报道一致,鉴定该化合物为山柰酚。

化合物8  黄色粉末;分子式为C15H10O7; ESIMS m/z: 303 [M + H]+, 301 [M – H]; 1H NMR (500 MHz, CD3OD): δ 7.76 (d, J = 2.1 Hz, 1H, H-2′), 7.66 (dd, J = 8.5, 2.1 Hz, 1H, H-6′), 6.91 (d, J = 8.5 Hz, 1H, H-5′), 6.41 (d, J = 2.0 Hz, 1H, H-8), 6.21 (d, J = 2.0 Hz, 1H, H-6); 13C NMR (125 MHz, CD3OD): δ 148.0 (C-2), 137.2 (C-3), 177.3 (C-4), 158.2 (C-5), 99.2 (C-6), 165.6 (C-7), 94.4 (C-8), 162.5 (C-9), 104.5 (C-10), 124.2 (C-1′), 116.0 (C-2′), 146.2 (C-3′), 148.8 (C-4′), 116.3 (C-5′), 121.7 (C-6′)。上述数据与文献[17]报道一致,鉴定该化合物为槲皮素。

化合物9  白色粉末;分子式为C23H22O11; ESIMS m/z: 497 [M + Na]+, 473 [M – H]; 1H NMR (600 MHz, CD3OD): δ 7.66 (d, J = 8.5 Hz, 2H, H-2′, 6′), 6.89 (d, J = 8.7 Hz, 2H, H-3′, 5′), 6.29 (s, 1H, H-8), 6.13 (d, J = 1.7 Hz, 1H, H-6), 0.75 (d, J = 6.3 Hz, 3H, H-6〞); 13C NMR (150 MHz, CD3OD): δ 159.3 (C-2), 135.5 (C-3), 178.9 (C-4), 105.9 (C-4a), 163.0 (C-5), 99.9 (C-6), 165.7 (C-7), 94.8 (C-8), 158.4 (C-8a), 122.5 (C-1′), 131.9 (C-2′, 6′), 116.4 (C-3′, 5′), 161.5 (C-4′), 102.5 (C-1〞), 69.5 (C-2〞), 74.9 (C-3〞), 70.0 (C-4〞), 71.7 (C-5〞), 17.5 (C-6〞), 20.9 (C-COMe), 172.5 (C-COMe)。以上数据与文献[18]报道一致, 鉴定该化合物为山柰酚- 3-O-(3-O-乙酰基-α-L-吡喃鼠李糖甙)。

化合物10  黄色粉末;分子式为C15H10O6; ESIMS m/z: 287 [M + H]+, 285 [M – H]; 1H NMR (500 MHz, CD3OD): δ 7.42~7.38 (m, 2H, H-2′, 6′), 6.92 (d, J = 8.9 Hz, 1H, H-5′), 6.55 (s, 1H, H-3), 6.46 (d, J = 2.1 Hz, 1H, H-8), 6.22 (d, J = 2.0 Hz, 1H, H-6); 13C NMR (125 MHz, CD3OD):δ 166.0 (C-2), 103.9 (C-3), 183.9 (C-4), 159.4 (C-5), 100.1 (C-6), 166.3 (C-7), 95.0 (C-8), 163.2 (C-9), 105.3 (C-10), 120.3 (C-1′), 114.2 (C-2′), 146.2 (C-3′), 147.0 (C-4′), 116.3 (C-5′), 116.8 (C-6′)。上述数据与文献[19]报道一致,鉴定该化合物为木犀草素。

化合物11  白色粉末;分子式为C36H56O10; ESIMS m/z: 671 [M + Na]+,485 [M + Cl]; 1H NMR (600 MHz, CD3OD): δ 5.37 (d, J = 8.2 Hz, 1H, H-1′), 5.24 (d, J = 3.7 Hz, 1H, H-12), 3.49 (d, J = 11.2 Hz, 1H, H-23), 3.10 (t, J = 12.0 Hz, 1H, H-2a), 2.85 (dd, J = 14.3, 3.9 Hz, 1H, H-2b), 1.34 (s, 3H, CH3-25), 1.18 (s, 3H, CH3-24), 1.01 (s, 3H, CH3-27), 0.93 (s, 3H, CH3- 26), 0.91 (s, 3H, CH3-30), 0.86 (s, 3H, CH3-29); 13C NMR (150 MHz, CD3OD): δ 215.1 (C-1), 44.7 (C-2), 73.4 (C-3), 43.3 (C-4), 47.0 (C-5), 18.5 (C-6), 31.5 (C-7), 40.4 (C-8), 40.6 (C-9), 53.3 (C-10), 26.4 (C-11), 124.2 (C-12), 144.3 (C-13), 42.9 (C-14), 28.9 (C-15), 24.0 (C-16), 47.8 (C-17), 49.6 (C-18), 48.2 (C-19), 44.1 (C-20), 34.9 (C-21), 33.5 (C-22), 65.9 (C-23), 13.3 (C-24), 16.0 (C-25), 18.4 (C-26), 26.2 (C-27), 178.1 (C-28), 33.3 (C-29), 24.0 (C-30), 95.7 (C-1′), 73.9 (C-2′), 78.4 (C-3′), 71.1 (C-4′), 78.7 (C-5′), 62.4 (C-6′)。上述数据与文献[20]报道一致,鉴定该化合物为1-氧代-3β, 23-二羟基齐墩果酸-28-O-β-D-吡喃葡萄糖苷。

化合物12  白色粉末;分子式为C21H20O10; ESIMS m/z: 887[2M+Na]+, 863 [2M – H]; 1H NMR (600 MHz, CD3OD): δ 7.67 (d, J = 8.8 Hz, 1H, H-2′, 6′), 6.85 (d, J = 8.8 Hz, 1H, H-3′, 5′), 6.26 (d, J = 2.0 Hz, 1H, H-8), 6.09 (d, J = 2.1 Hz, 1H, H-6), 5.30 (d, J = 1.6 Hz, 1H, H-1〞), 4.17 (dd, J = 3.3, 1.7 Hz, 1H, H- 2〞), 3.69~3.63 (m, 1H, H-3〞), 0.86 (d, J = 5.7 Hz, 1H, H-6〞); 13C NMR (150 MHz, CD3OD):δ 159.2 (C-2), 136.2 (C-3), 179.5 (C-4), 105.9 (C-4a), 163.1 (C-5), 99.8 (C-6), 165.7 (C-7), 94.8 (C-8), 158.4 (C-8a), 122.6 (C-1′), 131.9 (C-2′, 6′), 116.4 (C-3′, 5′), 161.4 (C-4′), 103.4 (C-1〞), 72.0 (C-2〞), 72.1 (C-3〞), 73.2 (C-4〞), 71.9 (C-5〞), 17.6 (C-6〞)。以上数据与文献[21]报道一致,鉴定该化合物为阿福豆苷。

2 结果和讨论

利用色谱柱色谱层析分离手段,从青钱柳叶的乙醇水提取物中分离得到12个化合物,经波谱学数据分析分别鉴定为:姜酮(1)、咖啡酸甲脂(2)、柚皮素(3)、阿江榄仁酸(4)、1-氧代-3β, 23-二羟基齐墩果酸(5)、2α-羟基熊果酸(6)、山柰酚(7)、槲皮素(8)、山柰酚-3-O-(3-O-乙酰基-α-L-吡喃鼠李糖苷) (9)、木犀草素(10)、1-氧代-3β, 23-二羟基齐墩果酸-28-O- β-D-吡喃葡萄糖苷(11)、阿福豆苷(12)。其中化合物125911为首次从青钱柳中分离得到。

有关文献报道,姜酮(1)具有良好的抗炎活性[22];咖啡酸甲酯(2)具有抗肿瘤、抗癌作用等[23];柚皮素(3)具有抗菌消炎、抗氧化等作用[24];阿江榄仁酸(4)具有降血糖[25]、抗肿瘤[26]、抗炎和抗胆碱酯酶[27]的活性;2α-羟基熊果酸(6)具有明确、良好的降血糖作用[28],且因其作用原理与胰岛素相似,被称为植物胰岛素;山柰酚(7)和槲皮素(8)具有良好的抗氧化活性[29],且山柰酚还具有降血糖[30]等作用。山柰酚-3-O-(3-O-乙酰基-α-L-吡喃鼠李糖苷) (9)具有抑制肿瘤细胞增殖的作用[18]; 木犀草素(10)具有抗肿瘤、抗氧化抗炎等作用[31]。阿福豆苷(12)也具有良好的降血糖作用,其对醛糖还原酶具有显著的抑制作用[32],并还具有良好的抗炎活性[33-34]。青钱柳叶中具有包括含有大量的2α-羟基熊果酸、阿福豆苷等多种具降血糖活性的成分,这应是青钱柳叶具有降血糖作用的原因之一。

本研究进一步丰富了青钱柳叶的化学物质基础,对于促进青钱柳叶更有效的开发利用具有积极重要的意义。

参考文献
[1] Chinese Pharmacopoeia Commission. Chinese Pharmacopoeia, Volume Ⅰ, CP 2000[M]. Beijing: China Medical Science Press, 2010.
国家药典委员会. 中华人民共和国药典(一部)[M]. 北京: 中国医药科技出版社, 2010.
[2] YI X, SHI J G, ZHOU G X, et al. Studies on the chemical constituents in the leaves of Cyclocarya paliurus[J]. China J Chin Mat Med, 2002, 27(1): 43-45.
易醒, 石建功, 周光雄, 等. 青钱柳化学成分研究[J]. 中国中药杂志, 2002, 27(1): 43-45. DOI:10.3321/j.issn:1001-5302.2002.01.017
[3] LI J, LU Y Y, LI F, et al. Study on chemical constituents of Cyclocarya paliurus[J]. J Chin Med Mat, 2006, 29(5): 441-442.
李俊, 陆园园, 李甫, 等. 青钱柳化学成分的研究[J]. 中药材, 2006, 29(5): 441-442. DOI:10.13863/j.issn1001-4454.2006.05.012
[4] SHU R G, SONG Z R, SHU J C. Study on the chemical constituents of the butanol extraction of Cyclocarya paliurus (Batal.) Iljinsk[J]. J Chin Med Mat, 2006, 29(12): 1304-1307.
舒任庚, 宋子荣, 舒积成. 青钱柳正丁醇部位化学成分研究[J]. 中药材, 2006, 29(12): 1304-1307. DOI:10.3321/j.issn:1001-4454.2006.12.017
[5] ZHANG X Q, YE W C, YIN Z Q, et al. Studies on chemical constituents of Cyclocarya paliurus (Batal.) Iljinsk[J]. China J Chin Mat Med, 2005, 30(10): 791-792.
张晓琦, 叶文才, 殷志琦, 等. 青钱柳的化学成分研究[J]. 中国中药杂志, 2005, 30(10): 791-792. DOI:10.3321/j.issn:1001-5302.2005.10.022
[6] LI J, LU Y Y, XU Z J, et al. Studies on flavones in the leaves of Cyclocarya paliums (Batal.) Iljinsk[J]. J Chin Med Mat, 2005, 28(12): 1058-1059.
李俊, 陆园园, 许子竞, 等. 青钱柳中黄酮成分的研究[J]. 中药材, 2005, 28(12): 1058-1059. DOI:10.3321/j.issn:1001-4454.2005.12.006
[7] LENG R X. Basic theoretical research and clinical observation of Cyclocarya paliurus[J]. Jiangxi J Trad Chin Med, 1994, 25(2): 64-65.
冷任轩. 青钱柳的基础理论研究和临床观察[J]. 江西中医药, 1994, 25(2): 64-65.
[8] WU Z F, MENG F C, CAO L J, et al. Triterpenoids from Cyclocarya paliurus and their inhibitory effect on the secretion of apoliprotein B48 in Caco-2 cells[J]. Phytochemistry, 2017, 142: 76-84. DOI:10.1016/j.phytochem.2017.06.015
[9] YANG Y X, YAN Y M, TAO M, et al. Chemical constituents from leaves of Rhododendron rubiginosum var. rubiginosum[J]. China J Chin Mat Med, 2013, 38(6): 839-843.
杨勇勋, 晏永明, 陶明, 等. 红棕杜鹃(原变种)叶的化学成分研究[J]. 中国中药杂志, 2013, 38(6): 839-843. DOI:10.4268/cjcmm20130613
[10] ZHAO X H, CHEN D H, SI J Y, et al. Studies on the phenolic acid constituents from Chinese medicine "Sheng-Ma", rhizome of Cimi-cifuga foetida L.[J]. Acta Pharm Sin, 2002, 37(7): 535-538.
赵晓宏, 陈迪华, 斯建勇, 等. 中药升麻酚酸类化学成分研究[J]. 药学学报, 2002, 37(7): 535-538. DOI:10.3321/j.issn:0513-4870.2002.07.008
[11] WANG X G, SHEN L T, ZENG Y Y, et al. Flavonoids from Ficus sarmentosa var. henryi[J]. Chin Trad Herb Drugs, 2010, 41(4): 526-529.
王学贵, 沈丽淘, 曾芸芸, 等. 珍珠莲中的黄酮类化学成分[J]. 中草药, 2010, 41(4): 526-529.
[12] ZHOU Y Y, WANG D, NIU F. Studies on constituents from pericarps of Juglans mandshurica with anti-tumor activity[J]. Chin Trad Herb Drugs, 2010, 41(1): 11-14.
周媛媛, 王栋, 牛峰. 抗肿瘤中药青龙衣化学成分的研究[J]. 中草药, 2010, 41(1): 11-14.
[13] LAI Y C, CHEN C K, TSAI S F, et al. Triterpenes as α-glucosidase inhibitors from Fagus hayatae[J]. Phytochemistry, 2012, 74: 206-211. DOI:10.1016/j.phytochem.2011.09.016
[14] OKADA Y, OMAE A, OKUYAMA T. A new triterpenoid isolated from Lagerstronemia speciosa (L.) Pers[J]. Chem Pharm Bull, 2003, 51(4): 452-454. DOI:10.1002/chin.200337151
[15] WU L J, XIANG T, HOU B L, et al. Chemical constituents from fruits of Ligustrum lucidum[J]. Acta Bot Sin, 1998, 40(1): 83-87.
吴立军, 相婷, 侯柏玲, 等. 女贞子化学成分的研究[J]. 植物学报, 1998, 40(1): 83-87.
[16] LI S H, XIANG Q L. Studies on chemcial constituents in Lysimachia paridiformis var. stenophylla[J]. Chin Trad Herb Drugs, 2010, 41(6): 881-883.
李胜华, 向秋玲. 狭叶落地梅的化学成分研究[J]. 中草药, 2010, 41(6): 881-883.
[17] TAO L, HUANG J C, ZHAO Y P, et al. Chemical constituents in Buddleja albiflora[J]. China J Chin Mat Med, 2009, 34(23): 3043-3046.
陶靓, 黄金程, 赵艳萍, 等. 巴东醉鱼草化学成分研究[J]. 中国中药杂志, 2009, 34(23): 3043-3046. DOI:10.3321/j.issn:1001-5302.2009.23.014
[18] YANG S J, LIU M C, LIANG N, et al. Discovery and antitumor activities of constituents from Cyrtomium fortumei (J.) Smith rhizomes[J]. Chem Cent J, 2013, 7(1): 24 DOI:10.1186/1752-153X-7-24
[19] LI M C, TANG S A, DUAN H Q. Chemical consitituents from Onychium japonicum[J]. Chin Trad Herb Drugs, 2010, 41(5): 685-688.
李明潺, 唐生安, 段宏泉. 野雉尾金粉蕨化学成分研究[J]. 中草药, 2010, 41(5): 685-688.
[20] YANG H, JEONG E J, KIM J, et al. Antiproliferative triterpenes from the leaves and twigs of Juglans sinensis on HSC-T6 cells[J]. J Nat Prod, 2011, 74(4): 751-756. DOI:10.1021/np1008202
[21] MASUDA T, JITOE A, KATO S, et al. Acetylated flavonol glycosides from Zingiber zerumbet[J]. Phytochemistry, 1991, 30(7): 2391-2392. DOI:10.1016/0031-9422(91)83656-6
[22] MIN G, KU S K, LEE T, et al. Suppressive effects of zingerone on TGFBIp-mediated septic responses[J/OL]. Arch Pharm Res, 2017: 1-12. doi: 10.1007/s12272-017-0919-9.
[23] FUJIOKA T, FURUMI K, FUJⅡ H, et al. Antiproliferative constituents from umbelliferae plants:V. A new furanocoumarin and falcarindiol furanocoumarin ethers from the root of Angelica japonica[J]. Chem Pharm Bull, 1999, 47(1): 96-100. DOI:10.1248/cpb.47.96
[24] JI P, ZHAO W M, YU T. Recent research progress of naringenin[J]. Chin J New Drugs, 2015, 24(12): 1382-1386, 1392.
季鹏, 赵文明, 于桐. 柚皮素的最新研究进展[J]. 中国新药杂志, 2015, 24(12): 1382-1386, 1392.
[25] UZOR P F, OSADEBE P O. Antidiabetic activity of the chemical constituents of Combretum dolichopetalum root in mice[J]. EXCLI J, 2016, 15: 290-296. DOI:10.17179/excli2016-252
[26] DIALLO B, VANHAELEN M, VANHAELEN-FASTR R, et al. Studies on inhibitors of skin-tumor promotion:Inhibitory effects of triterpenes from Cochlospermum tinctorium on Epstein-Barr virus acti-vation[J]. J Nat Prod, 1989, 52(4): 879-881. DOI:10.1021/np50064a039
[27] FACUNDO V A, RIOS K A, MEDEIROS C K, et al. Arjunolic acid in the ethanolic extract of Combretum leprosum root and its use as a potential multi-functional phytomedicine and drug for neurodegene-rative disorders:Anti-inflammatory and anticholinesterasic activities[J]. J Braz Chem Soc, 2005, 16(6B): 1309-1312. DOI:10.1590/S0103-50532005000800002
[28] LEE M S, THUONG P T. Stimulation of glucose uptake by triterpe-noids from Weigela subsessilis[J]. Phytother Res, 2010, 24(1): 49-53. DOI:10.1002/ptr.2865
[29] TANG X L, LIU J X, LI P, et al. Protective effects of kaempferol and quercetin on hypoxia/reoxygenation and peroxidation injury in neonatal cardiomyocytes[J]. Pharmacol Clin Chin Mat Med, 2012, 28(1): 56-59.
汤喜兰, 刘建勋, 李澎, 等. 山柰酚和槲皮素对乳鼠心肌缺氧复氧及过氧化损伤的保护作用[J]. 中药药理与临床, 2012, 28(1): 56-59. DOI:10.13412/j.cnki.zyyl.2012.01.022
[30] WU Q M, JIN Y M, NI H X. Effect of kaempferol on correlation factors of chronic complications of type 2 diabetic rats[J]. Chin Trad Herb Drug, 2015, 46(12): 1806-1809.
吴巧敏, 金雅美, 倪海祥. 山柰酚对2型糖尿病大鼠慢性并发症相关因子的影响[J]. 中草药, 2015, 46(12): 1806-1809. DOI:10.7501/j.issn.0253-2670.2015.12.018
[31] WANG J S, HE Y, ZHANG W J, et al. Advances in studies on pharmacological effects of luteolin[J]. Chin Bull Life Sci, 2013, 25(6): 560-565.
王继双, 何焱, 张文静, 等. 木犀草素的药理作用研究进展[J]. 生命科学, 2013, 25(6): 560-565. DOI:10.13376/j.cbls/2013.06.004
[32] JANG D S, KIM J M, LEE Y M, et al. Flavonols from Houttuynia cordata with protein glycation and aldose reductase inhibitory activity[J]. Nat Prod Sci, 2006, 12(4): 210-213.
[33] CHEN X, CHEN B, LI N, et al. Inhibitory effects of kaempferol-3-O-rhamnoside on inflammation[J]. Pharm J Chin PLA, 2016, 32(3): 260-262.
陈曦, 陈斌, 李楠, 等. 山柰酚-3-O-鼠李糖苷抗炎作用的研究[J]. 解放军药学学报, 2016, 32(3): 260-262.
[34] CHUNG M J, PANDEY R P, CHOI J W, et al. Inhibitory effects of kaempferol-3-O-rhamnoside on ovalbumin-induced lung inflammation in a mouse model of allergic asthma[J]. Int Immunopharmacol, 2015, 25(2): 302-310. DOI:10.1016/j.intimp.2015.01.031