文章快速检索     高级检索
  热带亚热带植物学报  2017, Vol. 25 Issue (6): 617-624  DOI: 10.11926/jtsb.3758
0

引用本文  

杨丹, 谢海辉. 法兰地草莓的芳香类和黄酮类成分[J]. 热带亚热带植物学报, 2017, 25(6): 617-624. DOI: 10.11926/jtsb.3758.
YANG Dan, XIE Hai-hui. Aromatics and Flavonoids from Strawberry cv. Falandi[J]. Journal of Tropical and Subtropical Botany, 2017, 25(6): 617-624. DOI: 10.11926/jtsb.3758.

基金项目

国家重点基础研究发展计划项目(973计划)(2013CB127106)资助

通信作者

谢海辉, E-mail:xiehaih@scbg.ac.cn

作者简介

杨丹, 女, 博士, 生物化学与分子生物学专业, 现工作单位:济宁医学院公共卫生学院。E-mail:yangdan210@mails.ucas.ac.cn

文章历史

收稿日期:2017-04-26
接受日期:2017-06-07
法兰地草莓的芳香类和黄酮类成分
杨丹 , 谢海辉     
中国科学院华南植物园, 广东省应用植物学重点实验室, 广州 510650
摘要:为了解草莓(Fragaria×ananassa Duch.)法兰地品种的化学成分,采用色谱分离方法,从新鲜果实的乙醇提取物中获得19个化合物。通过波谱数据分析鉴定了它们的结构,分别为对羟基苯甲酸(1)、没食子酸乙酯(2)、鞣花酸3-O-α-l-鼠李糖苷(3)、苄基β-d-葡萄糖苷(4)、淫羊藿次苷F2(5)、苄基6-O-α-l-呋喃阿拉伯糖基-β-d-葡萄糖苷(6)、苯乙基6-O-α-l-呋喃阿拉伯糖基-β-d-葡萄糖苷(7)、反式肉桂酰基β-d-葡萄糖苷(8)、顺式肉桂酰基β-d-葡萄糖苷(9)、反式对香豆酰基β-d-葡萄糖苷(10)、顺式对香豆酰基β-d-葡萄糖苷(11)、反式阿魏酰基β-d-葡萄糖苷(12)、山柰酚(13)、反式椴树苷(14)、山柰酚3-O-β-d-葡萄糖醛酸苷(15)、槲皮素(16)、槲皮素3-O-β-d-葡萄糖苷(17)、槲皮素3-O-β-d-葡萄糖醛酸苷(18)和根皮苷(19),化合物1~12为芳香类,其余为黄酮类。所有化合物均为首次从法兰地品种中报道,化合物4~9为首次从草莓中获得。
关键词草莓    法兰地品种    鲜果    芳香类    黄酮类    
Aromatics and Flavonoids from Strawberry cv. Falandi
YANG Dan , XIE Hai-hui     
Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
Foundation item: This work was supported by the National Basic Research Program of China (973 Program) (Grant No. 2013CB127106)
Abstract: To clarify the chemical constituents in strawberry (Fragaria×ananassa Duch.) cv. Falandi, nineteen compounds were isolated from the ethanol extract of its fresh fruits by means of chromatographic separation techniques. On the basis of spectral data, their structures were identified as p-hydroxybenzoic acid (1), ethyl gallate (2), ellagic acid 3-O-α-L-rhamnoside (3), benzyl β-D-glucoside (4), icariside F2 (5), benzyl 6-O-α-L-arabinofuranosyl-β-D-glucoside (6), phenethyl 6-O-α-L-arabinofuranosyl-β-D-glucoside (7), trans-cinnamoyl β-D-glucoside (8), cis-cinnamoyl β-D-glucoside (9), trans-p-coumaroyl β-D-glucoside (10), cis-p-coumaroyl β-D-glucoside (11), trans-feruloyl β-D-glucoside (12), kaempferol (13), trans-tiliroside (14), kaempferol 3-O-β-D-glucuronide (15), quercetin (16), quercetin 3-O-β-D-glucoside (17), quercetin 3-O-β-D-glucuronide (18), and phloridzin (19). Compounds 1-12 belong to aromatics and the others are flavonoids. All of them were reported from cv. Falandi and compounds 4-9 from strawberry for the first time.
Key words: Fragaria×ananassa    cv. Falandi    Fresh fruit    Aromatic compound    Flavonoid    

草莓(Fragaria×ananassa Duch.)为蔷薇科草莓属多年生草本,别名凤梨草莓,系威州草莓(F. virgirniana Duch.)与智利草莓[F. chiloensis (L.) Ehrh.]杂交而成的八倍体(2n=56),野生草莓为二倍体或四倍体。草莓在温带和亚热带地区广泛栽培.二十世纪初引入我国,目前我国草莓栽培面积和产量均居世界第一。草莓果实外形美观、色泽鲜艳、清香可口,富含维生素、矿物质、膳食纤维等营养性成分,还富含多酚类等次生代谢产物,具有预防心脑血管疾病、预防贫血、抗氧化和增强免疫力、抗癌、医治失眠、美容等保健作用[1-2]。法兰地品种草莓的种苗抗高温、高湿,抗病能力强,果实风味独特、硬度大,适合长途运输,是我国华南地区的草莓主栽品种[3]。为阐明该品种草莓的化学成分,我们从其鲜果的乙醇提取物中分离鉴定了22个酚类、9个降倍半萜类和3个三萜类化合物,并测定了它们的抗氧化和α-葡萄糖苷酶抑制活性[4-5]。本文报道从中分离鉴定的12个芳香类和7个黄酮类化合物。

1 材料和方法 1.1 材料

草莓(Fragaria×ananassa Duch.)法兰地品种鲜果于2013年3月采自广州市白云区太和镇草莓种植场。

青岛谱科分离材料公司柱层析硅胶(100~200目);烟台江友硅胶开发公司薄层色谱HSGF254硅胶板;瑞典GE Healthcare Bio-Sciences AB公司葡聚糖凝胶LH-20;美国Amberlite公司大孔树脂XAD-7HP。

1.2 仪器和试剂

日本岛津公司LC-6AD高效液相色谱仪和RID-10A视差检测器;利穗科技(苏州)公司EZ Purifier 100中压液相色谱仪;日本东京理化公司旋转蒸发仪;上海沪西分析仪器公司BSZ-100自动部份收集器;美国应用生物系统公司MDS SCIEX API 2000 LC-MS/MS质谱仪测电喷雾质谱(ESI-MS);布鲁克公司Ascend-500核磁共振仪,以Sigma-Aldrich公司氘代甲醇(CD3OD)或氘代二甲基亚砜(DMSO-d6)为溶剂,化学位移(δ, ppm)值以溶剂峰为参照。

提取用乙醇为食用级;石油醚、乙酸乙酯、正丁醇、三氯甲烷、甲醇、甲酸等为分析纯;高效液相色谱用甲醇和乙腈为色谱纯。

1.3 提取和分离

将摘除萼片和果柄的草莓鲜果(82.0 kg)切片, 用95%乙醇浸泡3次,每次50 L、2 d,合并滤液, 减压浓缩,得乙醇提取物3.7 kg。提取物用6 L蒸馏水溶解,倒入分液漏斗,加石油醚脱色3次,每次4 L。水液再分别用乙酸乙酯、正丁醇萃取4次,每次4 L,合并萃取液,减压浓缩至干,得乙酸乙酯萃取物68.6 g和正丁醇萃取物360.0 g。将后者过大孔吸附树脂柱,先用2倍柱体积的蒸馏水洗脱,再用4倍柱体积的90%乙醇洗脱,减压浓缩至干,得乙醇洗脱物86.6 g。合并乙酸乙酯萃取物和乙醇洗脱物,进行硅胶柱色谱分离,用三氯甲烷-甲醇混合液[10:0~0:10, (V/V, 下同)]洗脱,收集流份,经薄层色谱检查,合并为7个组分(F1~F7)。F2 (14.8 g)经中压液相色谱分离,用甲醇-水(2:8~10:0)为流动相,流速10 mL min-1,收集流份,经薄层色谱检查,合并为24个亚组分(F2-1~F2-24)。F2-2经葡聚糖凝胶柱色谱分离,用甲醇洗脱,得化合物1 (10 mg)。F2-3经高效液相色谱分离,以乙腈-水-甲酸(10:90:0.1)为流动相,流速5 mL min-1,得化合物4 (保留时间tR=63.1 min, 2 mg)。F2-4经高效液相色谱分离,以乙腈-水-甲酸(20:80:0.1)为流动相,流速5 mL min-1,得化合物2 (tR=60.2 min, 19 mg)。F2-5经中压液相色谱分离,再经高效液相色谱纯化,以乙腈-水-甲酸(20:80:0.1)为流动相,流速5 mL min-1,得化合物8 (tR=72.5 min, 16 mg)、9 (tR=75.1 min, 9 mg)和18 (tR=42.0 min, 13 mg)。F4 (11.0 g)经中压液相色谱分离,用甲醇-水(1:9~8:2)为流动相,流速10 mL min-1,收集流份,经薄层色谱检查,合并为21个亚组分(F4-1~F4-21)。F4-1经葡聚糖凝胶柱色谱分离,用甲醇洗脱,合并为A和B两个亚组分。F4-1A经高效液相色谱纯化,以乙腈-水(10:90)为流动相,流速5 mL min-1,得化合物6 (tR=35.0 min, 10 mg)。F4-1B经高效液相色谱纯化,以乙腈-水(2:8)为流动相,流速5 mL min-1,得化合物10 (tR=100.3 min, 35 mg)、11 (tR= 102.5 min, 15 mg)和12 (tR=72.9 min, 5 mg)。F4-2分别经中压液相色谱和葡聚糖凝胶柱色谱分离,再经高效液相色谱纯化,以乙腈-水(10:90)为流动相,流速5 mL min-1,得化合物5 (tR=87.5 min, 20 mg)。F4-4经葡聚糖凝胶柱色谱分离,再经高效液相色谱纯化,以甲醇-水(30:70)为流动相,流速5 mL min-1,得化合物7 (tR=60.2 min, 17 mg)。F4-8经中压液相色谱分离,得到7个亚组分。F4-8-3经葡聚糖凝胶柱色谱分离,得化合物3 (30 mg)和17 (2 mg)。F4-8-7经葡聚糖凝胶柱色谱分离,得化合物16 (4 mg)。F4-9经硅胶柱色谱分离,得化合物15 (11 mg)。F4-10经葡聚糖凝胶柱色谱分离,合并为7个亚组分。F4-10-4经高效液相色谱纯化,以乙腈-水-甲酸(42:58:0.1)为流动相,流速5 mL min-1,得化合物19 (tR=81.9 min, 27 mg)。F4-11经硅胶柱色谱和葡聚糖凝胶柱色谱分离,得化合物13 (8 mg)。F4-13经硅胶柱色谱分离,得化合物14 (100 mg)。

1.4 结构鉴定

化合物1  无色粉末(甲醇);ESI-MS m/z: 137 [M-H]-, 173 [M + Cl]-, 分子量138, 分子式C7H6O3; 1H NMR (CD3OD, 500 MHz): δ 7.88 (2H, d, J = 8.9 Hz, H-2, 6), 6.82 (2H, d, J = 8.9 Hz, H-3, 5); 13C NMR (CD3OD, 125 MHz): δ 122.7 (C-1), 133.0 (C-2, 6), 116.0 (C-3, 5), 163.3 (C-4), 170.1 (C-7)。以上数据与文献[6]报道的一致,故鉴定为对羟基苯甲酸(p-Hydroxybenzoic acid)。

化合物2  无色粉末(甲醇);ESI-MS m/z: 199 [M + H]+, 221 [M + Na]+, 197 [M-H]-, 分子量198, 分子式C9H10O5; 1H NMR (CD3OD, 500 MHz): δ 7.05 (2H, s, H-2, 6), 4.27 (2H, q, J = 7.1 Hz, H2-1′), 1.34 (3H, t, J = 7.1 Hz, H3-2′); 13C NMR (CD3OD, 125 MHz): δ 121.8 (C-1), 110.0 (C-2, 6), 146.4 (C-3, 5), 139.7 (C-4), 168.5 (C-7), 61.7 (C-1′), 14.6 (C-2′)。以上数据与文献[6]报道的一致,故鉴定为没食子酸乙酯(Ethyl gallate)。

化合物3  无色粉末(甲醇);ESI-MS m/z: 447 [M-H]-, 分子量448, 分子式C20H16O12; 1H NMR (DMSO-d6, 500 MHz): δ 7.56 (1H, s, H-5), 7.46 (1H, s, H-5′), 5.52 (1H, d, J = 1.3 Hz, H-1"), 4.06 (1H, dd, J = 3.2, 1.3 Hz, H-2"), 3.79 (1H, dd, J = 9.5, 3.2 Hz, H-3"), 3.32 (1H, dd, J = 9.5, 9.5 Hz, H-4"), 4.15 (1H, dd, J = 9.5, 6.2 Hz, H-5"), 1.07 (3H, d, J = 6.2 Hz, H3-6"); 13C NMR (DMSO-d6, 125 MHz): δ 113.2 (C-1), 111.7 (C-2), 142.4 (C-3), 136.7 (C-4), 152.4 (C-5), 111.3 (C-6), 158.9 (C-7), 112.2 (C-1′), 107.1 (C-2′), 136.2 (C-3′), 140.0 (C-4′), 148.4 (C-5′), 110.3 (C-6′), 158.7 (C-7′), 102.5 (C-1"), 70.2 (C-2"), 70.4 (C-3"), 71.4 (C-4"), 70.6 (C-5"), 17.7 (C-6")。以上数据与文献[7]报道的一致,故鉴定为鞣花酸4-O-α-l-鼠李糖苷(Ellagic acid 4-O-α-l-rhamnoside)。

化合物4  无色粉末(甲醇);ESI-MS m/z: 293 [M + Na]+, 269 [M-H]-, 305 [M + Cl]-, 分子量270, 分子式C13H18O6; 1H NMR (CD3OD, 500 MHz): δ 7.42 (2H, br d, J = 7.2 Hz, H-2, 6), 7.33 (2H, br t, J = 7.2 Hz, H-3, 5), 7.27 (1H, br t, J = 7.2 Hz, H-4), 4.93 (1H, d, J = 11.8 Hz, Ha-7), 4.67 (1H, d, J = 11.8 Hz, Hb-7), 4.36 (1H, d, J = 7.7 Hz, H-1′), 3.90 (1H, dd, J = 11.8, 2.1 Hz, Ha-6′), 3.69 (1H, dd, J = 11.8, 5.5 Hz, Hb-6′); 13C NMR (CD3OD, 125 MHz): δ 139.0 (C-1), 129.2 (C-2, 6), 129.3 (C-3, 5), 128.7 (C-4), 71.7 (C-7), 103.3 (C-1′), 75.1 (C-2′), 78.0 (C-3′), 71.7 (C-4′), 78.1 (C-5′), 62.8 (C-6′)。以上数据与文献[8]报道的一致,故鉴定为苄基β-d-葡萄糖苷(Benzyl β-d-glucoside)。

化合物5  无色粉末(甲醇);ESI-MS m/z: 425 [M + Na]+, 401 [M-H]-, 437 [M + Cl]-, 分子量402, 分子式C18H26O10; 1H NMR (CD3OD, 500 MHz): δ 7.43 (2H, br d, J = 7.2 Hz, H-2, 6), 7.33 (2H, br t, J = 7.2 Hz, H-3, 5), 7.27 (1H, br t, J = 7.2 Hz, H-4), 4.90 (1H, d, J = 11.8 Hz, Ha-7), 4.65 (1H, d, J = 11.8 Hz, Hb-7), 4.33 (1H, d, J = 7.7 Hz, H-1′), 5.05 (1H, d, J = 2.3 Hz, H-1"); 13C NMR (CD3OD, 125 MHz): δ 138.9 (C-1), 129.3 (C-2, 3, 5, 6), 128.7 (C-4), 71.8 (C-7), 103.2 (C-1′), 75.0 (C-2′), 78.3 (C-3′), 71.7 (C-4′), 77.0 (C-5′), 68.7 (C-6′), 110.0 (C-1"), 78.0 (C-2"), 80.6 (C-3"), 75.1 (C-4"), 65.6 (C-5")。以上数据与文献[9]报道的一致,故鉴定为淫羊藿次苷F2 (Icariside F2)。

化合物6  无色粉末(甲醇);ESI-MS m/z: 425 [M + Na]+, 401 [M-H]-, 437 [M + Cl]-, 分子量402, 分子式C18H26O10; 1H NMR (CD3OD, 500 MHz): δ 7.42 (2H, br d, J = 7.2 Hz, H-2, 6), 7.33 (2H, br t, J = 7.2 Hz, H-3, 5), 7.27 (1H, br t, J = 7.3 Hz, H-4), 4.90 (1H, d, J = 11.8 Hz, Ha-7), 4.66 (1H, d, J = 11.8 Hz, Hb-7), 4.36 (1H, d, J = 7.8 Hz, H-1′), 5.00 (1H, br s, H-1"); 13C NMR (CD3OD, 125 MHz): δ 138.9 (C-1), 129.3 (C-2, 3, 5, 6), 128.7 (C-4), 71.9 (C-7), 103.3 (C-1′), 75.1 (C-2′), 78.0 (C-3′), 72.0 (C-4′), 76.8 (C-5′), 68.1 (C-6′), 110.0 (C-1"), 83.3 (C-2"), 78.9 (C-3"), 85.9 (C-4"), 63.1 (C-5")。以上数据与文献[10, 11]报道的相符,故鉴定为苄基6-O-α-l-呋喃阿拉伯糖基-β-d-葡萄糖苷(Benzyl 6-O-α-l-arabinofuranosyl-β-d-glucoside)。

化合物7  白色粉末(甲醇);ESI-MS m/z: 439 [M + Na]+, 415 [M-H]-, 451 [M + Cl]-, 分子量416, 分子式C19H28O10; 1H NMR (CD3OD, 500 MHz): δ 7.23 (4H, m, H-2, 3, 5, 6), 7.15 (1H, m, H-4), 2.92 (1H, t, J = 7.3 Hz, H2-7), 3.26 (1H, m, Ha-8), 3.16 (1H, dd, J = 8.9, 8.0 Hz, Hb-8), 4.29 (1H, d, J = 7.8 Hz, H-1′), 4.94 (1H, d, J = 0.8 Hz, H-1"); 13C NMR (CD3OD, 125 MHz): δ 140.0 (C-1), 130.0 (C-2, 6), 129.4 (C-3, 5), 127.2 (C-4), 37.2 (C-7), 71.9 (C-8), 104.4 (C-1′), 75.1 (C-2′), 78.0 (C-3′), 71.9 (C-4′), 76.7 (C-5′), 68.1 (C-6′), 109.9 (C-1"), 83.2 (C-2"), 78.9 (C-3"), 85.9 (C-4"), 63.1 (C-5")。以上数据与文献[11]报道的一致,故鉴定为苯乙基6-O-α-l-呋喃阿拉伯糖基-β-d-葡萄糖苷(Phenethyl 6-O-α-l-arabinofuranosyl-β-d-glucoside)。

化合物8  白色粉末(甲醇);ESI-MS m/z: 333 [M + Na]+, 309 [M-H]-, 345 [M + Cl]-, 分子量310, 分子式C15H18O7; 1H NMR (CD3OD, 500 MHz): δ 7.63 (2H, dd, J = 6.6, 3.0 Hz, H-2, 6), 7.42 (3H, m, H-3, 4, 5), 7.81 (1H, d, J = 16.0 Hz, H-7), 6.58 (1H, d, J = 16.0 Hz, H-8), 5.60 (1H, d, J = 7.8 Hz, H-1′); 13C NMR (CD3OD, 125 MHz): δ 135.6 (C-1), 130.1 (C-2, 6), 129.4 (C-3, 5), 131.8 (C-4), 147.6 (C-7), 118.3 (C-8), 167.1 (C-9), 95.9 (C-1′), 74.0 (C-2′), 78.0 (C-3′), 71.1 (C-4′), 78.9 (C-5′), 62.3 (C-6′)。以上数据与文献[12]报道的一致,故鉴定为反式肉桂酰基β-d-葡萄糖苷(trans-Cinnamoyl β-d-glucoside)。

化合物9  白色粉末(甲醇);ESI-MS m/z: 333 [M + Na]+, 309 [M-H]-, 345 [M + Cl]-, 分子量310, 分子式C15H18O7; 1H NMR (CD3OD, 500 MHz): δ 7.68 (2H, dd, J = 6.5, 2.8 Hz, H-2, 6), 7.35 (3H, m, H-3, 4, 5), 7.08 (1H, d, J = 12.7 Hz, H-7), 6.02 (1H, d, J = 12.7 Hz, H-8), 5.54 (1H, d, J = 8.2 Hz, H-1′); 13C NMR (CD3OD, 125 MHz): δ 135.9 (C-1), 131.3 (C-2, 6), 129.0 (C-3, 5), 130.4 (C-4), 146.5 (C-7), 119.4 (C-8), 166.1 (C-9), 95.7 (C-1′), 73.9 (C-2′), 78.1 (C-3′), 71.1 (C-4′), 78.9 (C-5′), 62.4 (C-6′)。以上数据与文献[12]报道的一致,故鉴定为顺式肉桂酰基β-d-葡萄糖苷(cis-Cinnamoyl β-d-glucoside)。

化合物10  白色粉末(甲醇);ESI-MS m/z: 349 [M + Na]+, 325 [M-H]-, 361 [M + Cl]-, 分子量326, 分子式C15H18O8; 1H NMR (DMSO-d6, 500 MHz): δ 7.58 (2H, d, J = 8.6 Hz, H-2, 6), 6.80 (2H, d, J = 8.6 Hz, H-3, 5), 7.64 (1H, d, J = 15.9 Hz, H-7), 6.40 (1H, d, J = 15.9 Hz, H-8), 5.46 (1H, d, J = 8.1 Hz, H-1′); 13C NMR (DMSO-d6, 125 MHz): δ 125.0 (C-1), 130.5 (C-2, 6), 115.8 (C-3, 5), 160.1 (C-4), 146.0 (C-7), 113.6 (C-8), 165.4 (C-9), 94.2 (C-1′), 72.5 (C-2′), 76.5 (C-3′), 69.5 (C-4′), 77.8 (C-5′), 60.6 (C-6′)。以上数据与文献[13]报道的一致,故鉴定为反式对香豆酰基β-d-葡萄糖苷(trans-p-Coumaroyl β-d-glucoside)。

化合物11  白色粉末(甲醇);ESI-MS m/z: 349 [M + Na]+, 325 [M-H]-, 361 [M + Cl]-, 分子量326, 分子式C15H18O8; 1H NMR (DMSO-d6, 500 MHz): δ 7.74 (2H, d, J = 8.6 Hz, H-2, 6), 6.77 (2H, d, J = 8.6 Hz, H-3, 5), 6.96 (1H, d, J = 12.9 Hz, H-7), 5.78 (1H, d, J = 12.9 Hz, H-8), 5.43 (1H, d, J = 8.1 Hz, H-1′); 13C NMR (DMSO-d6, 125 MHz): δ 125.2 (C-1), 133.1 (C-2, 6), 114.9 (C-3, 5), 159.2 (C-4), 145.3 (C-7), 114.4 (C-8), 164.5 (C-9), 94.1 (C-1′), 72.4 (C-2′), 76.5 (C-3′), 69.5 (C-4′), 77.9 (C-5′), 60.6 (C-6′)。由H-7与H-8的耦合常数12.9 Hz可判断苷元中的双键为顺式构型[14],故鉴定为顺式对香豆酰基β-d-葡萄糖苷(cis-p-Coumaroyl β-d-glucoside)。

图 1 化合物1~19的结构 Fig. 1 Structures of compounds 119

化合物12  白色粉末(甲醇);ESI-MS m/z: 355 [M-H]-, 391 [M + Cl]-, 分子量356, 分子式C16H20O9; 1H NMR (DMSO-d6, 500 MHz): δ 7.33 (1H, d, J = 1.5 Hz, H-2), 6.80 (1H, d, J = 8.2 Hz, H-5), 7.15 (1H, dd, J = 8.2, 1.5 Hz, H-6), 7.63 (1H, d, J = 15.9 Hz, H-7), 6.48 (1H, d, J = 15.9 Hz, H-8), 3.81 (3H, s, OCH3), 5.46 (1H, d, J = 8.0 Hz, H-1′); 13C NMR (DMSO-d6, 125 MHz): δ 125.4 (C-1), 115.6 (C-2), 148.0 (C-3), 149.8 (C-4), 111.4 (C-5), 123.4 (C-6), 146.4 (C-7), 113.9 (C-8), 165.5 (C-9), 56.7 (OCH3), 94.3 (C-1′), 72.6 (C-2′), 77.9 (C-3′), 69.6 (C-4′), 76.6 (C-5′), 60.7 (C-6′)。以上数据与文献[15](测定溶剂为CD3OD)报道的基本一致,故鉴定为反式阿魏酰基β-d-葡萄糖苷(trans-Feruloyl β-d-glucoside)。

化合物13  黄色粉末(甲醇);ESI-MS m/z: 285 [M-H]-, 分子量286, 分子式C15H10O6; 1H NMR (CD3OD, 500 MHz): δ 6.20 (1H, d, J = 2.1 Hz, H-6), 6.39 (1H, d, J = 2.1 Hz, H-8), 8.08 (2H, d, J = 8.9 Hz, H-2′, 6′), 6.90 (2H, d, J = 8.9 Hz, H-3′, 5′); 13C NMR (CD3OD, 125 MHz): δ 148.0 (C-2), 137.1 (C-3), 177.4 (C-4), 162.5 (C-5), 99.3 (C-6), 165.6 (C-7), 94.5 (C-8), 158.2 (C-9), 104.5 (C-10), 123.7 (C-1′), 130.7 (C-2′, 6′), 116.3 (C-3′, 5′), 160.6 (C-4′)。以上数据与文献[6]报道的一致,故鉴定为山柰酚(Kaempferol)。

化合物14  黄色粉末(甲醇);ESI-MS m/z: 617 [M + Na]+, 593 [M-H]-, 629 [M + Cl]-, 分子量594, 分子式C30H26O13; 1H NMR (DMSO-d6, 500 MHz): δ 12.58 (1H, 5-OH), 6.15 (1H, d, J = 2.1 Hz, H-6), 6.39 (1H, d, J = 2.1 Hz, H-8), 7.99 (2H, d, J = 8.8 Hz, H-2′, 6′), 6.86 (2H, d, J = 8.8 Hz, H-3′, 5′), 5.45 (1H, d, J = 7.3 Hz, H-1"), 4.27 (1H, dd, J = 12.0, 2.2 Hz, Ha-6"), 4.03 (1H, dd, J = 12.0, 6.3 Hz, Hb-6"), 7.37 (2H, d, J = 8.4 Hz, H-2''', 6'''), 6.81 (2H, d, J = 8.4 Hz, H-3''', 5'''), 7.34 (1H, d, J = 15.9 Hz, H-7'''), 6.12 (1H, d, J = 15.9 Hz, H-8'''); 13C NMR (DMSO-d6, 125 MHz): δ 156.2 (C-2), 136.4 (C-3), 177.4 (C-4), 161.1 (C-5), 98.7 (C-6), 164.1 (C-7), 93.6 (C-8), 156.4 (C-9), 103.9 (C-10), 120.7 (C-1′), 130.8 (C-2′, 6′), 115.7 (C-3′, 5′), 160.0 (C-4′), 101.0 (C-1"), 74.1 (C-2"), 76.2 (C-3"), 69.9 (C-4"), 74.2 (C-5"), 63.0 (C-6"), 124.9 (C-1'''), 130.1 (C-2''', 6'''), 115.1 (C-3''', 5'''), 159.8 (C-4'''), 144.6 (C-7'''), 113.6 (C-8'''), 166.1 (C-9''')。以上数据与文献[16]报道的一致,故鉴定为山柰酚3-O-(6-O-反式对香豆酰基)-β-d-葡萄糖苷[Kaempferol 3-O-(6-O-trans-p-coumaroyl)-β-d-glucoside],即反式椴树苷(trans-Tiliroside)。

化合物15  黄色粉末(甲醇);ESI-MS m/z: 463 [M + H]+, 485 [M + Na]+, 461 [M-H]-, 分子量462, 分子式C21H18O12; 1H NMR (DMSO-d6, 500 MHz): δ 12.53 (1H, s, 5-OH), 6.21 (1H, d, J = 2.0 Hz, H-6), 6.43 (1H, d, J = 2.0 Hz, H-8), 8.04 (2H, d, J = 8.8 Hz, H-2′, 6′), 6.87 (2H, d, J = 8.8 Hz, H-3′, 5′), 5.49 (1H, d, J = 7.1 Hz, H-1"); 13C NMR (DMSO-d6, 125 MHz): δ 156.3 (C-2), 133.0 (C-3), 177.2 (C-4), 160.1 (C-5), 98.8 (C-6), 164.3 (C-7), 93.7 (C-8), 161.2 (C-9), 103.9 (C-10), 120.6 (C-1′), 130.9 (C-2′, 6′), 115.1 (C-3′, 5′), 156.3 (C-4′), 101.1 (C-1"), 73.9 (C-2"), 75.8 (C-3"), 71.5 (C-4"), 75.8 (C-5"), 169.9 (C-6")。以上数据与文献[17]报道的一致,故鉴定为山柰酚3-O-β-d-葡萄糖醛酸苷(Kaempferol 3-O-β-d-glucuronide)。

化合物16  黄色粉末(甲醇);ESI-MS m/z: 325 [M + Na]+, 301 [M-H]-, 分子量302, 分子式C15H10O7; 1H NMR (CD3OD, 500 MHz): δ 6.18 (1H, d, J = 2.1 Hz, H-6), 6.39 (1H, d, J = 2.1 Hz, H-8), 7.74 (1H, d, J = 2.2 Hz, H-2′), 8.09 (1H, d, J = 8.6 Hz, H-5′), 7.64 (1H, dd, J = 8.6, 2.2 Hz, H-6′); 13C NMR (CD3OD, 125 MHz): δ 158.3 (C-2), 130.7 (C-3), 177.3 (C-4), 162.5 (C-5), 99.2 (C-6), 165.6 (C-7), 94.4 (C-8), 158.2 (C-9), 104.5 (C-10), 124.1 (C-1′), 116.3 (C-2′), 148.0 (C-3′), 148.8 (C-4′), 116.0 (C-5′), 121.7 (C-6′)。以上数据与文献[6]报道的一致,故鉴定为槲皮素(Quercetin)。

化合物17  黄色粉末(甲醇);ESI-MS m/z: 487 [M + Na]+, 463 [M-H]-, 分子量464, 分子式C21H20O12; 1H NMR (CD3OD, 500 MHz): δ 6.18 (1H, d, J = 2.0 Hz, H-6), 6.37 (1H, d, J = 2.1 Hz, H-8), 7.71 (1H, d, J = 2.2 Hz, H-2′), 6.87 (1H, d, J = 8.5 Hz, H-5′), 7.59 (1H, dd, J = 8.5, 2.2 Hz, H-6′), 5.23 (1H, d, J = 7.7 Hz, H-1"), 3.71 (1H, dd, J = 11.8, 2.2 Hz, Ha-6"), 3.58 (1H, dd, J = 11.8, 5.4 Hz, Hb-6"); 13C NMR (CD3OD, 125 MHz): δ 159.2 (C-2), 135.6 (C-3), 179.5 (C-4), 163.1 (C-5), 100.0 (C-6), 166.1 (C-7), 94.9 (C-8), 158.5 (C-9), 105.9 (C-10), 123.2 (C-1′), 117.2 (C-2′), 146.0 (C-3′), 149.9 (C-4′), 116.0 (C-5′), 123.2 (C-6′), 104.4 (C-1"), 75.7 (C-2"), 78.1 (C-3"), 71.2 (C-4"), 78.4 (C-5"), 62.5 (C-6")。以上数据与文献[18]报道的一致,故鉴定为槲皮素3-O-β-d-葡萄糖苷(Quercetin 3-O-β-d-glucoside)。

化合物18  黄色粉末(甲醇);ESI-MS m/z: 479 [M + H]+, 501 [M + Na]+, 477 [M-H]-, 分子量478, 分子式C21H18O13; 1H NMR (DMSO-d6, 500 MHz): δ 12.45 (1H, br s, 5-OH), 6.20 (1H, br s, H-6), 6.40 (1H, br s, H-8), 7.84 (1H, br s, H-2′), 6.83 (1H, d, J = 7.0 Hz, H-5′), 7.50 (1H, d, J = 7.0 Hz, H-6′), 5.39 (1H, d, J = 6.3 Hz, H-1"); 13C NMR (DMSO-d6, 125 MHz): δ 156.8 (C-2), 133.5 (C-3), 177.3 (C-4), 161.1 (C-5), 98.8 (C-6), 164.4 (C-7), 93.6 (C-8), 156.3 (C-9), 103.8 (C-10), 121.2 (C-1′), 116.9 (C-2′), 144.9 (C-3′), 148.5 (C-4′), 115.3 (C-5′), 120.7 (C-6′), 101.8 (C-1"), 73.9 (C-2"), 76.2 (C-3"), 71.6 (C-4"), 75.2 (C-5"), 170.9 (C-6")。以上数据与文献[17]报道的一致,故鉴定为槲皮素3-O-β-d-葡萄糖醛酸苷(Quercetin 3-O-β-d-glucuronide)。

化合物19  黄色粉末(甲醇);ESI-MS m/z: 459 [M + Na]+, 435 [M-H]-, 471 [M + Cl]-, 分子量436, 分子式C21H24O10; 1H NMR (CD3OD, 500 MHz): δ 7.06 (2H, d, J = 8.2 Hz, H-2, 6), 6.69 (2H, d, J = 8.2 Hz, H-3, 5), 2.88 (2H, t, J = 7.5 Hz, H2-7), 6.19 (1H, br s, H-3′), 5.96 (1H, br s, H-5′), 5.04 (1H, d, J = 6.3 Hz, H-1"), 3.91 (1H, br d, J = 11.9 Hz, Ha-6"), 3.72 (1H, dd, J = 11.8, 4.5 Hz, Hb-6"); 13C NMR (CD3OD, 125 MHz): δ 133.9 (C-1), 130.4 (C-2, 6), 116.1 (C-3, 5), 156.3 (C-4), 30.8 (C-7), 46.9 (C-8), 206.5 (C-9), 106.8 (C-1′), 167.5 (C-2′), 95.4 (C-3′), 165.8 (C-4′), 98.3 (C-5′), 162.3 (C-6′), 102.0 (C-1"), 74.7 (C-2"), 78.4 (C-3"), 71.1 (C-4"), 78.4 (C-5"), 62.4 (C-6")。以上数据与文献[19]报道的一致,故鉴定为根皮苷(Phloridzin)。

2 结果和讨论

采用色谱分离方法,从草莓法兰地品种鲜果中分离得到19个化合物,分别鉴定为对羟基苯甲酸(1)、没食子酸乙酯(2)、鞣花酸3-O-α-l-鼠李糖苷(3)、苄基β-d-葡萄糖苷(4)、淫羊藿次苷F2 (5)、苄基6-O-α-l-呋喃阿拉伯糖基-β-d-葡萄糖苷(6)、苯乙基6-O-α-l-呋喃阿拉伯糖基-β-d-葡萄糖苷(7)、反式肉桂酰基β-d-葡萄糖苷(8)、顺式肉桂酰基β-d-葡萄糖苷(9)、反式对香豆酰基β-d-葡萄糖苷(10)、顺式对香豆酰基β-d-葡萄糖苷(11)、反式阿魏酸酰基β-d-葡萄糖苷(12)、山柰酚(13)、反式椴树苷(14)、山柰酚3-O-β-d-葡萄糖醛酸苷(15)、槲皮素(16)、槲皮素3-O-β-d-葡萄糖苷(17)、槲皮素3-O-β-d-葡萄糖醛酸苷(18)和根皮苷(19)。所有化合物均为首次从该品种草莓中报道,其中化合物4~9为首次从草莓中报道。

化合物1~310~19均含酚羟基,具有清除自由基和抑制α-葡萄糖苷酶活性[4]。对羟基苯甲酸有防腐、防霉和杀菌作用。没食子酸乙酯在体外能降低高转移性人乳腺癌MDA-MB-231的侵袭能力,可能与抑制癌细胞中原癌基因和延长因子蛋白以及mRNA的表达有关[20]。鞣花酸及其糖苷具有抗癌、抗突变、抑制人体免疫缺陷病毒、凝血等作用,能保护创面免受细菌的侵入,防止感染、抑制溃疡,还具有降压、镇痛作用[21]。淫羊藿次苷F2能抑制肿瘤坏死因子α (TNF-α)刺激的核因子κB (NF-κB)的产生(IC50=16.25 μmol L–1),显示出抗炎活性[22]。山柰酚具有防癌、抗癌、抗感染、抗炎作用,对动脉粥样硬化和糖尿病的防治作用,对蛋白激酶的抑制和免疫抑制作用,还能对抗β-淀粉样蛋白对神经元的损伤等[23]。反式银椴苷能有效地抑制糖负荷小鼠的体重增加,尤其是内脏脂肪重量的增加及血浆中葡萄糖水平的增加[24]。槲皮素具有抗肿瘤、抗氧化、抗感染(对金黄色葡萄球菌的最低杀菌浓度小于6.1 μmol L–1)、免疫抑制、心血管保护和血糖调节等多种药理作用[25]。槲皮素3-葡萄糖苷可明显改善大鼠脑缺血-再灌注损伤,减轻缺血再灌注导致的脑水肿、氧化损伤和能量代谢障碍,对心肌缺血及再灌注损伤也有明显的保护作用[26]。根皮苷能降低糖尿病小鼠的血糖、甘油三酯和总胆固醇含量;对于高膳食导致的氧化损伤的果蝇具有明显的保护作用,其抗氧化活性强于维生素E;还具有抗炎、抗癌作用[27]

参考文献
[1] LUO X B, HE L M. Nutritional value and health function of strawberry[J]. Food Nutri China, 2011, 17(4): 74-76.
罗学兵, 贺良明. 草莓的营养价值与保健功能[J]. 中国食物与营养, 2011, 17(4): 74-76. DOI:10.3969/j.issn.1006-9577.2011.04.020
[2] CHENG R, SHENG J P. Research progress on polyphenolic phyto-chemicals of strawberry fruits[J]. J Food Saf Qual, 2015, 6(2): 575-584.
程然, 生吉萍. 草莓多酚类植物化学物研究进展[J]. 食品安全质量检测学报, 2015, 6(2): 575-584.
[3] LIU Y J, PENG L T, YE J L, et al. Components and stabilities of anthocyanins from 'Faland' strawberry fruits[J]. J Huazhong Agric Univ, 2016, 31(1): 24-30.
刘雨佳, 彭丽桃, 叶俊丽, 等. '法兰地'草莓果实中花色素苷的组成及稳定性[J]. 华中农业大学学报, 2016, 31(1): 24-30.
[4] YANG D, XIE H H, JIANG Y M, et al. Phenolics from strawberry cv. Falandi and their antioxidant and α-glucosidase inhibitory activities[J]. Food Chem, 2016, 194: 857-863. DOI:10.1016/j.foodchem.2015.08.191
[5] YANG D, LIANG J, XIE H H, et al. Norsesquiterpenoids and triterpenoids from strawberry cv. Falandi[J]. Food Chem, 2016, 203(1): 67-72. DOI:10.1016/j.foodchem.2016.02.036
[6] WANG H P, CAO F, YANG X W. Chemical constituents in aerial parts of Polygonum capitatum[J]. Chin Trad Herb Med, 2013, 44(1): 24-30.
王洪平, 曹芳, 杨秀伟. 头花蓼地上部分的化学成分研究[J]. 中草药, 2013, 44(1): 24-30. DOI:10.7501/j.issn.0253-2670.2013.01.006
[7] LI L, ZHAO Y Y, LIU W Y, et al. HPLC with quadrupole TOF-MS and chemometrics analysis for the characterization of Folium turpiniae from different regions[J]. J Sep Sci, 2013, 36(15): 2552-2561. DOI:10.1002/jssc.201300360
[8] de MARINO S, FESTA C, ZOLLO F, et al. Phenolic glycosides from Cucumis melo var. inodorus seeds[J]. Phytochem Lett, 2009, 2(3): 130-133. DOI:10.1016/j.phytol.2009.04.001
[9] WANG M F, LI J G, RANGARAJAN M, et al. Antioxidative phenolic compounds from sage (Salvia officinalis)[J]. J Agric Food Chem, 1998, 46(12): 4869-4873. DOI:10.1021/jf980614b
[10] YANG H L, YU S S, PEI Y H. Studies on chemical constituents from leaves of Lysidice brevicalyx[J]. China J Chin Mat Med, 2008, 33(22): 2633-2635.
杨华良, 虞石山, 裴月湖. 短萼仪花叶化学成分研究[J]. 中国中药杂志, 2008, 33(22): 2633-2635. DOI:10.3321/j.issn:1001-5302.2008.22.014
[11] MA S J, MIZUTANI M, HIRATAKE J, et al. Substrate specificity of β-primeverosidase, a key enzyme in aroma formation during oolong tea and black tea manufacturing[J]. Biosci Biotechnol Biochem, 2001, 65(12): 2719-2729. DOI:10.1271/bbb.65.2719
[12] HIRADATE S, MORITA S, SUGIE H, et al. Phytotoxic cis-cinnamoyl glucosides from Spiraea thunbergii[J]. Phytochemistry, 2004, 65(6): 731-739. DOI:10.1016/j.phytochem.2004.01.010
[13] INA H, KOMAKID K, ⅡDA H. Hydroxycinnamylglucoses from Spiraea thunbergii[J]. Planta Med, 1987, 53(5): 502 DOI:10.1055/s-2006-962788
[14] CHEN Q, WANG T, GE D D, et al. Isolation and identification of flavonoids from Leontopodium leontopodioides (Willd.) Beauv. (Ⅱ)[J]. J Shenyang Pharm Univ, 2012, 29(2): 104-108.
陈秋, 王涛, 葛丹丹, 等. 火绒草黄酮类成分的分离与鉴定(Ⅱ)[J]. 沈阳药科大学学报, 2012, 29(2): 104-108.
[15] BADERSCHNEIDER B, WINTERHALTER P. Isolation and chara-cterization of novel benzoates, cinnamates, flavonoids, and lignans from riesing wine and screening for antioxidant activity[J]. J Agric Food Chem, 2001, 49(6): 2788-2798. DOI:10.1021/jf010396d
[16] SUN Q, WU J, LI F F, et al. Isolation and identification of chemical constituents from Daphne genkwa Sieb. et Zucc.[J]. J Shenyang Pharm Univ, 2014, 31(2): 94-98.
孙倩, 武洁, 李菲菲, 等. 芫花化学成分的分离与鉴定[J]. 沈阳药科大学学报, 2014, 31(2): 94-98.
[17] DUAN Y H, DAI Y, GAO H, et al. Chemical constituents from Sarcandra glabra[J]. Chin Trad Herb Med, 2010, 41(1): 29-32.
段营辉, 戴毅, 高昊, 等. 草珊瑚的化学成分研究[J]. 中草药, 2010, 41(1): 29-32. DOI:10.7501/j.issn.0253-2670.2010.1.009
[18] FERNANDEZ J, REYS R, PONCE H, et al. Isoquercitrin from Argemone platyceras inhibits carbachol and leukotriene D4-induced contraction in guinea-pig airways[J]. Eurp J Pharmacol, 2005, 522(1/2/3): 108-115. DOI:10.1016/j.ejphar.2005.08.046
[19] CUENDET M, POTTERAT O, SALVI A, et al. A stilbene and dihydrochalcones with radical scavenging activities from Loiseleuria procumbens[J]. Phytochemistry, 2000, 54(8): 871-874. DOI:10.1016/S0031-9422(00)00200-4
[20] HUANG L Y, CHEN X. The effect of ethyl gallate on the invasion ability of human breast cancer MDA-MB-231 cells and the underlying mechanism of action[J]. Oncol Progr, 2016, 14(4): 375-377.
黄丽英, 陈夏. 没食子酸乙酯对人乳腺癌MDA-MB-231细胞侵袭能力及其作用机制研究[J]. 癌症进展, 2016, 14(4): 375-377. DOI:10.11877/j.issn.1672-1535.2016.14.04.24
[21] DING Y S, SUN X H, LI Y G, et al. Recent progress of ellagic acid and its derivatives[J]. J Hefei Univ Technol, 2008, 31(11): 1809-1812.
丁运生, 孙小虎, 李有桂, 等. 鞣花酸及其衍生物研究进展[J]. 合肥工业大学学报, 2008, 31(11): 1809-1812. DOI:10.3969/j.issn.1003-5060.2008.11.020
[22] BAI M M, SHI W, TIAN J M, et al. Soluble epoxide hydrolase inhibitory and anti-inflammatory components from the leaves of Eucommia ulmoides Oliver (Duzhong)[J]. J Agric Food Chem, 2015, 63(8): 2198-2205. DOI:10.1021/acs.jafc.5b00055
[23] CHEN Y H, ZHOU K Y, YUAN H Y. Research progress on kaempferol pharmacodynamics[J]. Guangdong Med J, 2010, 31(8): 1064-1066.
陈育华, 周克元, 袁汉尧. 山奈酚药效的研究进展[J]. 广东医学, 2010, 31(8): 1064-1066. DOI:10.3969/j.issn.1001-9448.2010.08.058
[24] NINOMIYA K, MATSUDA H, KUBO M, et al. Potent anti-obese principle from Rosa canina:Structural requirements and mode of action of trans-tiliroside[J]. Bioorg Med Chem Lett, 2007, 17(11): 3059-3064. DOI:10.1016/j.bmcl.2007.03.051
[25] LUO M X, LUO D, ZHAO W H. Research progress on pharmaco-logical action of quercetin[J]. Chin J Enthnomed Enthnopharm, 2014, 17(1): 12-14.
骆明旭, 罗丹, 赵万红. 槲皮素药理作用研究进展[J]. 中国民族民间医药, 2014, 17(1): 12-14.
[26] HU Q R, JIA Z. Protective effects of quercetin 3-glucoside on cerebral ischemia-reperfusion injury in rats[J]. Clin J Chin Med, 2015, 7(3): 33-35.
胡清茹, 贾真. 槲皮素-3-葡萄糖苷对大鼠脑缺血-再灌注损伤的保护作用[J]. 中医临床研究, 2015, 7(3): 33-35. DOI:10.3969/j.issn.1674-7860.2015.03.015
[27] TAN S, ZHOU Z Q. Current research status on phloridzin[J]. Food Ferm Ind, 2013, 39(8): 182-186.
谭飔, 周志钦. 根皮苷研究进展[J]. 食品与发酵工业, 2013, 39(8): 182-186. DOI:10.13995/j.cnki.11-1802/ts.2013.08.004