文章快速检索     高级检索
  热带亚热带植物学报  2017, Vol. 25 Issue (1): 81-86  DOI: 10.11926/jtsb.3614
0

引用本文  

王玲琼, 徐巧林, 董丽梅, 等. 油茶果壳化学成分研究[J]. 热带亚热带植物学报, 2017, 25(1): 81-86. DOI: 10.11926/jtsb.3614.
WANG Ling-qiong, XU Qiao-lin, DONG Li-mei, et al. Chemical Constituents from the Fruit Shell of Camellia oleifera[J]. Journal of Tropical and Subtropical Botany, 2017, 25(1): 81-86. DOI: 10.11926/jtsb.3614.

基金项目

国家自然科学基金面上项目(31270406);中国科学院知识创新工程前沿先导性项目(KSCX2-EWJ-28)资助

通信作者

谭建文, E-mail:jwtan@scbg.ac.cn

作者简介

王玲琼, 女, 硕士生, 研究方向为天然产物化学。E-mail:w15928974797@sina.cn

文章历史

收稿日期:2016-04-01
接受日期:2016-05-10
油茶果壳化学成分研究
王玲琼1,2, 徐巧林3, 董丽梅1,2, 张强1,2, 谭建文1     
1. 广东省应用植物学重点实验室, 中国科学院华南植物园, 广州 510650;
2. 中国科学院大学, 北京 100049;
3. 广东省林业科学研究院, 广州 510520
摘要:为了解油茶(Camellia oleifera Abel.)果壳中的化学成分,从其95%乙醇提取物中分离得到10个化合物。经波谱数据分析分别鉴定为:3α-菠菜甾醇(1)、麦角甾-4,6,8(14),22-四烯-3-酮(2)、(R)-de-O-metillasiodiplodin(3)、4',5,7-三羟基二氢黄酮(4)、大黄素(5)、6-乙基-5-羟基-2,7-二甲氧基-1,4-萘醌(6)、ω-羟基大黄素(7)、macrophorin A(8)、negunfurol(9)、1-(3',5'-二甲氧基)苯基-2-(4″-羟基)苯基乙烷(10)。化合物1~9为首次从油茶中分离得到,化合物2、3、5~9为首次从山茶属植物中分离得到。
关键词油茶    果壳    化学成分    
Chemical Constituents from the Fruit Shell of Camellia oleifera
WANG Ling-qiong1,2, XU Qiao-lin3, DONG Li-mei1,2, ZHANG Qiang1,2, TAN Jian-wen1    
1. Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China;
3. Guangdong Academy of Forestry, Guangzhou 510520, China
Foundation item: This work was supported by the National Natural Science Foundation of China (Grant No.31270406);and the Knowledge Innovation Front Pilot Project of Chinese Academy of Sciences (Grant No.KSCX2-EWJ-28)
Abstract: To study the chemical constituents of Camellia oleifera (Abel.), ten compounds were isolated from the 95% ethanol extract. On the basis of spectral data, their structures were identified as 3α-spinasterol (1), ergosta-4, 6, 8(14), 22-tetraen-3-one (2), (R)-de-O-metillasiodiplodin (3), 4', 5, 7-trihydroxyflavanone (4), emodin (5), 6-ethyl-5-hydroxy-2, 7-dimethoxy-1, 4-naphthoquinone (6), ω-hydroxyemodin (7), macrophorin A (8), negunfurol (9), 1-(3', 5'-dimethoxy)-phenyl-2-(4"-hydroxy) phenylethane (10). Compounds 1-9 were obtained from this species for the first time, and compounds 2, 3, 5-9 were obtained from the genus Camellia for the first time.
Key words: Camellia oleifera    Fruit shell    Chemical constituent    

油茶 (Camellia oleifera Abel.) 为山茶科 (Theaceae) 山茶属木本植物,常绿小乔木,油茶与油橄榄、油棕、椰子并称为世界四大木本油料作物[1]。我国是油茶原产地,油茶在我国主要分布于南方地区,涉及长江流域及以南的18个省 (区),其中又以湖南、江西和广西3个省区为集中栽培区[2],2013年油茶种植总面积已达3.83×106 hm2[3]。油茶果壳占油茶果重量的2/3,可用作提取木糖醇、皂素、醛糖、栲胶及木质素衍生品等,还可用来制作活性炭和食用菌培养基料[4]。相关研究表明油茶果壳提取物具有降脂、降血糖、预防肥胖、抗氧化、抗癌、抑制前列腺癌细胞增殖等活性[5-10],但对油茶果壳中单体化合物的分离研究鲜有报道。本文以油茶果壳为原料,从其乙醇提取物中分离鉴定了10个化合物,其中化合物1~9为首次从油茶中分离得到,化合物235~9为首次从山茶属植物中分离得到。

1 材料和方法 1.1 材料

油茶果壳于2014年采收自湖南省湘潭市宣丰桥,由中国科学院华南植物园邢福武研究员鉴定为山茶科山茶属植物油茶 (Camellia oleifera Abel.)。凝胶SephadexLH-20为瑞典Amersham Biosciences公司生产;薄层色谱正相硅胶板 (HFGF254) 为山东烟台江友硅胶开发有限公司产品;柱色谱正相层析硅胶为青岛海洋化工有限公司产品 (200~300目);氘代试剂为Sigma公司产品;反相色谱柱 (400 mm× 25 mm, 500 mm×50 mm, 50 μm)。显色方法包括紫外荧光显色 (254 nm)、碘蒸气显色以及喷洒硫酸-乙醇溶液 (10:90, V/V) 加热显色。

1.2 仪器

高效液相半制备使用北京创新通恒科技有限公司的HPLC半制备系统,泵型号为P3000,检测器为UV3000UV-VIS,色谱柱为Fuji-C18 (10 μm-100 A);HPLC采用日本岛津公司LC-20AT型液相色谱仪、SPD-M20A检测器和Shim-Pack PRC-ODS色谱柱 (粒径5 μm, 孔径12 nm, 250 mm×20 mm); 减压浓缩采用日本东京理化公司N-1000旋转蒸发仪、CCA-1110循环式冷却箱和SB-1000电热恒温水浴锅;中压半制备使用北京创新通恒科技有限公司的HPLC半制备系统,泵型号为P3000,检测器为UV3000UV-VIS,反相色谱柱 (400 mm×25 mm, 500 mm×50 mm, 50 μm);电喷雾质谱 (ESI-MS) MDS SCIEX API 2000LC/MS/MS仪,以甲醇为溶剂,直接进样测定;1H NMR谱和13C NMR谱分别采用Bruker DRX-400核磁共振仪和Bruker Avance 600核磁共振仪,并以四甲基硅烷为内标测定;比旋光度用Perkin-Elmer 341旋光仪测定。

1.3 提取和分离

干燥油茶果壳20 kg,粉碎后用95%乙醇浸提3次,每次2 d。浸提液减压浓缩后合并,加水制成混悬液,依次用石油醚、乙酸乙酯和正丁醇各萃取3次,各萃取部经减压浓缩合并后,得到石油醚萃取部 (105 g)、乙酸乙酯萃取部 (177 g)、正丁醇萃取部 (265 g)。

石油醚萃取部 (105 g) 经正相硅胶柱层析 (200~300目),以石油醚-丙酮 (200:1~0:100) 梯度洗脱,利用TLC检测合并主点相同的流分,得到13个组分P1~P13。P7 (19 g) 经正相硅胶柱层析 (200~300目),以石油醚-丙酮 (200:1~0:100) 梯度洗脱,利用TLC检测合并主点相同的流分,得到14个亚组分P7-1~P7-14。P7-6 (322 mg) 经Sephadex LH-20柱层析,以氯仿-甲醇 (1:4) 洗脱,得到化合物2(8 mg)。P9 (5.9 g) 经中压液相色谱分离,以甲醇-水 (30:100~100:0) 梯度洗脱,利用TLC检测合并主点相同的流分,得到16个亚组分P9-1~P9-16。P9-4 (33.2 mg) 经正相硅胶柱层析 (200~300目),以石油醚-乙酸乙酯 (70:1) 洗脱,得到化合物6(16 mg)。P11 (1.2 g) 经正相硅胶柱层析 (200~300目),以石油醚-丙酮 (98:2~0:100) 梯度洗脱,利用TLC检测合并主点相同的流分,得到11个亚组分P11-1~P11-11。P11-5 (70 mg) 经正相硅胶柱层析 (200~300目),以石油醚-丙酮 (70:1) 洗脱,得到化合物1(10.8 mg)。P12 (4.9 g) 经中压液相色谱分离,以甲醇-水 (65:100~100:0) 梯度洗脱,利用TLC检测合并主点相同的流分,得到13个亚组分P12-1~P12-13。P12-3 (237.6 mg) 经Sephadex LH-20柱层析,以氯仿-甲醇 (1:4) 洗脱,得到化合物9(17.2 mg)。P12-6 (340.8 mg) 经Sephadex LH-20柱层析,以氯仿-甲醇 (1:4) 洗脱,得到化合物5(3.5 mg)。

乙酸乙酯部分 (177g) 经正相硅胶柱层析 (200~300目),以氯仿-甲醇 (100:0~0:100) 梯度洗脱, 利用TLC检测合并主点相同的流分,得到8个组分E1~E8。E2 (5.2 g) 经中压液相色谱分离,以甲醇-水 (65:100~100:0) 梯度洗脱,利用TLC检测合并主点相同的流分,得到17个亚组分E2-1~E2-17。E2-12 (200 mg) 经Sephadex LH-20柱层析,以氯仿-甲醇 (1:4) 洗脱,得到化合物3(7 mg)。E3 (6 g) 经中压液相色谱分离,以甲醇-水 (55:100~100:0) 梯度洗脱,利用TLC检测合并主点相同的流分,得到12个亚组分E3-1~E3-12。E3-4 (76.8 mg) 经Sephadex LH-20柱层析,以氯仿-甲醇 (1:4) 洗脱,得到化合物10(7 mg)。E4 (6 g) 经中压液相色谱分离,以甲醇-水 (50:100~100:0) 梯度洗脱,利用TLC检测合并主点相同的流分,得到17个亚组分E4-1~E4-17。E4-3 (102.4 mg) 经Sephadex LH-20柱层析, 以氯仿-甲醇 (1:4) 洗脱,得到化合物4(19 mg)。E4-5 (120.8 mg) 经Sephadex LH-20柱层析,以氯仿-甲醇 (1:4) 洗脱,得到化合物7(11 mg)。E4-9 (28 mg) 经Sephadex LH-20柱层析,以氯仿-甲醇 (1:4) 洗脱, 得到化合物8(3 mg)。

1.4 结构鉴定

3α-菠菜甾醇(3α-Spinasterol, 1)     无色晶体;分子式为C29H48O; ESI-MS m/z: 435 [M + Na]+, 413 [M + H]+, 413 [M + H]+; 1H NMR (500 MHz, CDCl3): δ5.13 (2H, dd, J=14.9, 8.9 Hz, H-22, 23), 5.00 (1H, dd, J=15.1, 8.7 Hz, H-7), 3.57 (1H, m, H-3), 1.00 (3H, d, J=6.6 Hz, H-21), 0.90 (3H, d, H-26), 0.82 (3H, s, H-29), 0.80 (3H, d, J=4.6 Hz, H-27), 0.78 (3H, s, H-19), 0.52 (3H, d, H-18); 13C NMR (125 MHz, CDCl3): δ37.4 (C-1), 38.2 (C-2), 71.3 (C-3), 31.7 (C-4), 40.5 (C-5), 29.9 (C-6), 117.7 (C-7), 139.8 (C-8), 49.7 (C-9), 34.4 (C-10), 21.6 (C-11), 39.7 (C-12), 43.5 (C-13), 55.3 (C-14), 23.2 (C-15), 28.7 (C-16), 56.1 (C-17), 12.1 (C-18), 13.3 (C-19), 41.0 (C-20), 21.3 (C-21), 138.4 (C-22), 129.6 (C-23), 51.5 (C-24), 32.1 (C-25), 21.8 (C-26), 19.2 (C-27), 25.1 (C-28), 12.2 (C-29)。以上数据与文献[11]报道一致。

麦角甾-4, 6, 8(14), 22-四烯-3-(Ergosta-4, 6, 8(14), 22-tetraen-3-one, 2)    黄色油状;分子式为C28H40O; ESI-MS m/z: 415 [M + Na]+, 393 [M + H]+, 431 [M + K]+; 1H NMR (500 MHz, CDCl3): δ6.58 (1H, d, J=9.5 Hz, H-7), 6.01 (1H, d, J=9.5 Hz, H-6), 5.71 (1H, s, H-4), 5.21 (2H, m, H-22, 23), 1.04 (3H, d, J=6.7 Hz, H-21), 0.97 (3H, s, H-19), 0.94 (3H, s, H-18), 0.91 (3H, d, J=6.9 Hz, H-28), 0.82 (6H, m, H-26, 27); 13C NMR (125 MHz, CDCl3): δ 34.4 (C-1, 2), 199.8 (C-3), 123.2 (C-4), 164.6 (C-5), 124.7 (C-6), 134.3 (C-7), 124.6 (C-8), 44.5 (C-9), 37.0 (C-10), 19.2 (C-11), 35.8 (C-12), 44.2 (C-13), 156.3 (C-14), 25.6 (C-15), 27.9 (C-16), 56.0 (C-17), 19.2 (C-18), 16.9 (C-19), 39.5 (C-20), 21.4 (C-21), 135.2 (C-22), 132.8 (C-23), 43.1 (C-24), 33.3 (C-25), 19.9 (C-26), 20.2 (C-27), 17.9 (C-28)。上述数据与文献[12]报道一致。

(R)-de-O-Metillasiodiplodin (3)    白色晶体; 分子式为C16H22O4; ESI-MS m/z: 279 [M + H]+, 301 [M + Na]+, 579 [2M + Na]+, 595 [2M + K]+, 277 [M-H]-1H NMR (500 MHz, CDCl3): δ11.94 (1H, s, 15-OH), 6.25 (1H, d, J=2.6 Hz, H-13), 6.20 (1H, d, J=2.6 Hz, H-11), 5.15 (1H, m, H-3), 3.25 (1H, m, H-10β), 2.48 (1H, m, H-10α), 1.91 (1H, m, H-4β), 1.76 (1H, m, H-4α), 1.34 (3H, d, J=6.2 Hz, H-17); 13C NMR (125 MHz, CDCl3): δ172.1 (C-1), 75.3 (C-3), 33.7 (C-4), 21.4 (C-5), 27.4 (C-6), 24.4 (C-7), 24.8 (C-8), 31.0 (C-9), 31.3 (C-10), 149.7 (C-11), 110.9 (C-12), 160.3 (C-13), 101.6 (C-14), 165.7 (C-15), 105.8 (C-16), 20.3 (C-17)。上述数据与文献[13]报道一致。

4′, 5, 7-三羟基二氢黄酮 (4′, 5, 7-Trihydroxy flavanone, 4)    黄色粉末;分子式为C15H12O5; ESI-MS m/z: 273 [M + H]+, 311 [M + K]+, 545 [2M + H]+, 271 [M-H]-, 307.5 [M + Cl]+; 1H NMR (500 MHz, d6-DMSO): δ12.15 (1H, s, 5-OH), 7.31 (2H, m, H-2′, 6′), 6.79 (2H, m, H-3′, 5′), 5.88 (2H, s, H-6, 8), 5.43 (1H, dd, J=12.8, 2.9 Hz, H-2), 3.26 (1H, dd, J=17.1, 12.8 Hz, H-3α), 2.68 (1H, dd, J=17.1, 3.1 Hz, H-3β); 13C NMR (125 MHz, d6-DMSO): δ128.9 (C-1′), 128.4 (C-2′, C-6′), 115.2 (C-3′, C-5′), 157.8 (C-4′), 78.5 (C-2), 42.0 (C-3), 196.4 (C-4), 101.8 (C-4a), 163.0 (C-5), 95.8 (C-6), 166.7 (C-7), 95.0 (C-8), 163.5 (C-8a)。上述数据与文献[14]报道一致。

大黄素 (Emodin, 5)     黄色晶体;分子式为C15H10O5; ESI-MS m/z: 271 [M + H]+, 293 [M + Na]+, 563 [2M + Na]+, 269 [M-H]-; 1H NMR (500 MHz, d6-DMSO): δ 12.09 (2×1H, each, s, 2×OH), 7.49 (1H, dd, J=1.6, 0.6 Hz, H-5), 7.17 (1H, dd, J=1.6, 0.8 Hz, H-7), 7.12 (1H, d, J=2.4 Hz, H-4), 6.59 (1H, d, J=2.4 Hz, H-2), 2.41 (3H, s, H-6); 13C NMR (125 MHz, d6-DMSO): δ164.5 (C-1), 107.9 (C-2), 165.6 (C-3), 108.8 (C-4), 135.1 (C-4a), 120.5 (C-5), 148.3 (C-6), 124.1 (C-7), 161.4 (C-8), 108.9 (C-8a), 189.7 (C-9), 113.4 (C-9a), 181.4 (C-10), 132.8 (C-10a), 21.5 (6-CH3)。上述数据与文献[15]报道一致。

6-乙基-5-羟基-2, 7-二甲氧基-1, 4-萘醌 (6-Ethyl-5-hydroxy-2, 7-dimethoxy-1, 4-naphthoquinone, 6)    橙色晶体;分子式为C14H14O5; ESI-MS m/z: 285 [M + Na]+, 301 [M + K]+; 1H NMR (500 MHz, CDCl3): δ12.47 (1H, s, 5-OH), 7.22 (1H, s, H-8), 5.99 (1H, m, H-3), 3.95 (3H, s, OME-7), 3.88 (3H, s, OME-2), 2.71 (2H, q, J=7.5 Hz, H-CH2CH3), 1.10 (3H, t, J=7.5 Hz, H-CH2CH3); 13C NMR (125 MHz, CDCl3): δ179.9 (C-1), 160.8 (C-2), 109.5 (C-3), 190.2 (C-4), 160.7 (C-5), 127.8 (C-6), 162.6 (C-7), 103.2 (C-8), 109.2 (C-9), 130.1 (C-10), 16.5 (CH2), 13.1(CH3), 56.4 (OME-2), 56.8 (OME-7)。上述数据与文献[16]报道一致。

ω-羟基大黄素(ω-Hydroxyemodin, 7)    黄色粉末;分子式为C15H10O6; ESI-MS m/z: 309 [M + Na]+, 595 [2M + Na]+, 285 [M-H]-; 1H NMR (500 MHz, C5D5N): δ 12.52 (1H, s, 8-OH), 8.16 (1H, s, H-4), 7.71 (2H, d, J=2.4 Hz, H-5), 7.70 (1H, s, H-2), 7.01 (1H, d, J=2.4 Hz, H-7), 5.01 (2H, s, H-11); 13C NMR (126 MHz, C5D5N): δ163.3 (C-1), 121.8 (C-2), 154.2 (C-3), 118.2 (C-4), 134.4 (C-4a), 110.5 (C-5), 167.9 (C-6), 109.2 (C-7), 166.3 (C-8), 110.1 (C-8a), 191.1 (C-9), 115.3 (C-9a), 182.6 (C-10), 136.6 (C-10a), 63.6 (C-11)。上述数据与文献[17]报道一致。

Macrophorin A (8)    白色固体;分子式为C22H32O4; ESI-MS m/z: 383 [M + Na]+, 399 [M + K]+, 359 [M-H]-, 395.5 [M + Cl]+; 1H NMR (500 MHz, CDCl3): δ5.92 (1H, m, H-2′), 4.80, 4.53 (2×1H, each, s, H-12), 4.65 (1H, s, H-4′), 3.78 (1H, d, J=3.0 Hz, H-5′), 0.84 (3H, s, H-13), 0.78 (3H, s, H-14), 0.68 (3H, s, H-15); 13C NMR (125 MHz, CDCl3): δ39.0 (C-1), 19.6 (C-2), 42.3 (C-3), 33.8 (C-4), 55.8 (C-5), 24.7 (C-6), 38.4 (C-7), 149.5(C-8), 51.8 (C-9), 40.0 (C-10), 21.2 (C-11), 106.9 (C-12), 33.8 (C-13), 21.9 (C-14), 14.7 (C-15), 193.1 (C-1′), 121.5 (C-2′), 156.1 (C-3′), 66.0 (C-4′), 60.9 (C-5′), 61.4 (C-6′), 63.2 (C-7′)。上述数据与文献[18]报道一致。

Negunfurol (9)    黄色油状;分子式为C15H26O3; ESI-MS m/z: 277 [M + Na]+, 293 [M + K]+; 1H NMR (500 MHz, CDCl3): δ5.87 (1H, ddd, J=17.3, 10.7, 3.2 Hz, H-2), 5.54 (2H, m, H-5, 6), 5.15 (1H, dd, J=17.3, 1.3 Hz, H-1α), 5.01 (1H, dd, J=10.7, 0.9 Hz, H-1β), 3.72 (1H, td, J=7.1, 2.8 Hz, H-10), 2.17 (2H, m, H-4), 1.27 (3H, s, H-14), 1.22 (3H, d, J=2.3 Hz, H-12), 1.17 (3H, d, J=8.1 Hz, H-15), 1.08 (3H, d, J=5.7 Hz, H-13); 13C NMR (125 MHz, CDCl3): δ112.0 (C-1), 145.0 (C-2), 72.8 (C-3), 45.3 (C-4), 122.4 (C-5), 140.3 (C-6), 82.9 (C-7), 38.0 (C-8), 26.6 (C-9), 85.6 (C-10), 71.4 (C-11), 27.3 (C-12), 24.3 (C-13), 27.3 (C-14), 27.6 (C-15)。上述数据与文献[19]报道一致。

1-(3′, 5′-二甲氧基)苯基-2-(4″-羟基)苯基乙烷[1-(3′, 5′-Dimethoxy) phenyl-2-(4″-hydroxy) phenyl thane, 10]     橙色黏性油状;分子式为C16H18O3; ESI-MS m/z: 259 [M + H]+, 281 [M + Na]+, 297 [M + K]+, 257 [M-H]-; 1H NMR (500 MHz, CDCl3): δ7.03 (2H, m, H-2″, 6″), 6.73 (2H, m, H-3″, 5″), 6.31 (2H, d, J=2.2 Hz, H-2′, 6′), 6.30 (1H, m, H-4′), 3.75 (6H, s, OME-3′, 5′), 2.81 (4H, m, H-1, 2); 13C NMR (125 MHz, CDCl3): δ 37.0 (C-1), 38.7 (C-2), 55.5 (OME-3′, 5′), 144.4 (C-1′), 106.8 (C-2′, 6′), 160.9 (C-3′, 5′), 398.1 (C-4′), 134.1 (C-1″), 129.8 (C-2″, 6″), 115.3 (C-3″, 5″), 153.9 (C-4″)。以上数据与文献[20]报道一致。

2 结果和讨论

利用色谱柱层析分离手段,从油茶果壳乙醇提取物中分离得到10个化合物,经波谱数据分析,它们的结构被鉴定为3α-菠菜甾醇 (1)、麦角甾-4, 6, 8(14), 22-四烯-3-酮 (2)、(R)-de-O-metilla-siodiplodin (3)、4′, 5, 7-三羟基二氢黄酮 (4)、大黄素 (5)、6-乙基-5-羟基-2, 7-二甲氧基-1, 4-萘醌 (6)、ω-羟基大黄素 (7)、macrophorin A (8)、negunfurol (9)、1-(3′, 5′-二甲氧基) 苯基-2-(4″-羟基) 苯基乙烷 (10)。化合物1~9为首次从油茶中分离获得,其中化合物235~9为首次从山茶属植物中分离得到。

相关文献报道,3α-菠菜甾醇 (1) 有抗炎和细胞毒活性,对HL-60细胞的IC50为6.5 μg mL-1[21-22]。(R)-de-O-metillasiodiplodin (3) 能有效抑制前列腺素合成、具有抗菌、抗肿瘤活性,并且是胰脂肪酶的高效抑制剂和盐皮质激素受体的拮抗剂[23]。4′, 5, 7-三羟基二氢黄酮 (4) 有抗癌、抗突变、抗炎、抗动脉粥样硬化活性[24-27],以及能抑制二甲基亚胺诱导的肝损伤[28]。大黄素 (5) 具有利尿、抗炎、抗菌、抗病毒、抗肿瘤等多种药理活性[29]。ω-羟基大黄素 (7) 能增强免疫细胞对金黄色葡萄球菌的杀灭能力[30]。macrophorin A (8) 具有潜在的抗真菌、抗菌和小鼠肿瘤细胞毒活性[18]。negunfurol (9) 对HL-60具有细胞毒活性[19]

本研究以油茶果壳为原料,对其化学成分展开了系统分离与鉴定研究,这有助于进一步丰富油茶中的化学物质,且对于推进油茶果壳的进一步研究和开发利用具有积极意义。

参考文献
[1] MA R, DING S J. Invigorating woody oil industry in China[J]. Agri Outlook, 2013, 9(10): 51-54.
马榕, 丁声俊. 大力振兴中国木本油特色产业[J]. 农业展望, 2013, 9(10): 51-54. DOI:10.3969/j.issn.1673-3908.2013.10.011
[2] HE G X, LI L S, XU L C, et al. Growth characteristic and function value of Camellia oliefera[J]. Jiangxi For Sci Techn, 2007, 15(4): 39-41.
贺桂先, 李林松, 徐林初, 等. 油茶的生长特性及其功能价值[J]. 江西林业科技, 2007, 15(4): 39-41. DOI:10.3969/j.issn.1006-2505.2007.04.013
[3] ZHENG Q Q. The separation of active constituents from shell of Oiltea camellia and its inhibition on benign prostate hyperplasi[D]. Hangzhou:Zhejiang University, 2014:1-78.
郑茜茜. 油茶蒲抑制良性前列腺增生活性成分的分离纯化及其作用研究[D]. 杭州: 浙江大学, 2014: 1-78.
[4] CHENG S P. Research on Camellia oleifera industry development of east Fujian Province[D]. Fuzhou:Fujian Agriculture and Forestry University, 2010:1-53. doi:10.7666/d.y1815719.
程树平. 闽东油茶产业发展对策研究[D]. 福州: 福建农林大学, 2010: 1-53. doi: 10.7666/d.y1815719.
[5] CHEN Q P. Effects of functional factors in the hull of Camellia oleifera Abel. on obesity and dyslipidemia[D]. Hangzhou:Hangzhou University, 2011:1-107.
陈秋平. 油茶蒲减肥降脂功能因子研究[D]. 杭州: 浙江大学, 2011: 1-107. http://cdmd.cnki.com.cn/Article/CDMD-10335-1011085606.htm
[6] CHEN Q P, JIANG T J, MA X F. Study on anti-obesity effects of water extracts from hull of Camellia oleifera Abel.[J]. J Chin Cereal Oil Assoc, 2011, 26(9): 66-69.
陈秋平, 姜天甲, 马晓丰. 油茶蒲水提物的减肥作用[J]. 中国粮油学报, 2011, 26(9): 66-69.
[7] CHEN Y Q, KANG H Q, CHEN Q P, et al. Antioxidant activity of extracts from the fruit shell of Camellia oleifera[J]. Sci Silv Sin, 2011, 47(3): 20-24.
陈亚琪, 康海权, 陈秋平, 等. 油茶蒲提取物的抗氧化活性[J]. 林业科学, 2011, 47(3): 20-24. DOI:10.11707/j.1001-7488.20110304
[8] ZHANG H F, DONG Y L, ZHANG Y. The research of gallic acid's α-glycosidase inhibition and the hypoglycemic mechanism[J]. China Pharm, 2011, 20(21): 8-10.
张海凤, 董亚林, 张琰. 没食子酸对α-葡萄糖苷酶的抑制作用及其降糖机制研究[J]. 中国药业, 2011, 20(21): 8-10. DOI:10.3969/j.issn.1006-4931.2011.21.004
[9] DAI T T. Studies on hypoglycemic effect of extract from fruit shell of Camellia oleifera Abel.[D]. Hangzhou:Zhejiang University, 2011:1-47.
戴甜甜. 油茶蒲鞣质提取及其降血糖活性研究[D]. 杭州: 浙江大学, 2011: 1-47.
[10] LUO X W. The effects of ethanol extracts from fruit shell of Camellia oleifera Abel. on inhibiting 5α-reductase and preventing prostate diseases[D]. Hangzhou:Zhejiang University, 2011:1-58.
罗晓伟. 油茶蒲醇提物抑制5α-还原酶及对前列腺疾病的作用[D]. 杭州: 浙江大学, 2011: 1-58.
[11] WANG A X, ZHANG Q, JIA Z J. A new furobenzopyranone and other constituents from Anaphalis lacteal[J]. Pharmazie, 2004, 59(10): 807-811. DOI:10.1002/chin.200505221
[12] WANG H Q, LIU C, FANG L H, et al. Studies on chemical constituents of Guizhi Fuling capsule (Ⅳ)[J]. Chin Trad Herb Drugs, 2013, 44(11): 1386-1390.
王洪庆, 刘超, 方莲花, 等. 桂枝茯苓胶囊化学成分研究 (Ⅳ)[J]. 中草药, 2013, 44(11): 1386-1390. DOI:10.7501/j.issn.0253-2670.2013.11.005
[13] de SOUSA L M, da S GOIS R W, LEMOS T L G, et al. Constituintes químicos e avaliação da atividade antibacteriana de Macroptilium lathyroides (L.) Urb. (Fabaceae)[J]. Quím Nova, 2013, 36(9): 1370-1374. DOI:10.1590/S0100-40422013000900016
[14] NOBAKHT M, GRKOVIC T, TRUEMAN S J, et al. Chemical constituents of kino extract from Corymbia torelliana[J]. Molecules, 2014, 19(11): 17862-17871. DOI:10.3390/molecules191117862
[15] CHEN D J, WANG L, ZU X D, et al. Studies on the extraction of emodin and the analysis of structure by NMR[J]. J Nanjing Trad Chin Med Univ, 2010, 26(2): 126-129.
陈东军, 王磊, 祖晓冬, 等. 大黄素的高效提取及其NMR结构探索研究[J]. 南京中医药大学学报, 2010, 26(2): 126-129. DOI:10.3969/j.issn.1000-5005.2010.02.015
[16] OTOMO N, SATO H, SAKAMURA S. Novel phytotoxins produced by the causal fungus of the shoot blight of larches[J]. Agri Biol Chem, 1983, 47(5): 1115-1119. DOI:10.1080/00021369.1983.10865757
[17] KHAMTHONG N, RUKACHAISIRIKUL V, TADPETCH K, et al. Tetrahy droanthraquinone and xanthone derivatives from the marine-derived fungus Trichoderma aureoviride PSU-F95[J]. Arch Pharm Res, 2012, 35(3): 461-468. DOI:10.1007/s12272-012-0309-2
[18] SASSA T, ISHIZAKI A, NUKINA M, et al. Isolation and identification of new antifungal macrophorins E, F and G as malonyl meroterpenes from Botryosphaeria berengeriana[J]. Biosci Biotechn Biochem, 1986, 62(11): 2260-2262. DOI:10.1271/bbb.62.2260
[19] ZHENG C J, PU J, ZHANG H, et al. Sesquiterpenoids and norter-penoids from Vitex negundo[J]. Fitoterapia, 2012, 83(1): 49-54. DOI:10.1016/j.fitote.2011.09.012
[20] MIZUNO C S, MA G Y, KHAN S, et al. Design, synthesis, biological evaluation and docking studies of pterostilbene analogs inside PPARα[J]. Bioorg Med Chem, 2008, 16(7): 3800-3808. DOI:10.1016/j.bmc.2008.01.051
[21] LUO L, LI Z Q, ZHANG L L, et al. The chemical constituents from Pittosporum kerrii Craib (Ι)[J]. J Yunnan Univ (Nat Sci), 2013, 35(1): 83-86.
罗蕾, 李祖强, 张吕丽, 等. 羊脆木的化学成分研究 (Ι)[J]. 云南大学学报 (自然科学版), 2013, 35(1): 83-86. DOI:10.7540/j.ynu.2012.12504
[22] ZHOU C C, SUN X B, LIU J Y, et al. Anti-inflammatory effect of α-spinasterol[J]. Acta Pharm Sin, 1985, 20(4): 257-261.
周重楚, 孙晓波, 刘建勇, 等. α-菠菜甾醇的抗炎作用[J]. 药学学报, 1985, 20(4): 257-261.
[23] JIANG C S, ZHOU R, Gong J X, et al. Synthesis, modification, and evaluation of (R)-de-O-methyllasiodiplodin and analogs as non-steroidal antagonists of mineralocorticoid receptor[J]. Bioorg Med Chem Lett, 2011, 21(4): 1171-1175. DOI:10.1016/j.bmcl.2010.12.101
[24] SO F V, GUTHRIE N, CHAMBERS A F, et al. Inhibition of proli-feration of estrogen receptor-positive MCF-7 human breast cancer cells by flavonoids in the presence and absence of excess estrogen[J]. Cancer Lett, 1997, 112(2): 127-133. DOI:10.1016/S0304-3835(96)04557-0
[25] CHOI J S, PARK K Y, MOON S H, et al. Antimutagenic effect of plant flavonoids in the Salmonella assay system[J]. Arch Pharm Res, 1994, 17(2): 71-75. DOI:10.1007/BF02974226
[26] RASO G M, MELI R, DI CARLO G, et al. Inhibition of inducible nitric oxide synthase and cyclooxygenase-2 expression by flavonoids in macrophage J774A.1[J]. Life Sci, 2001, 68(8): 921-931. DOI:10.1016/S0024-3205(00)00999-1
[27] LEE C H, JEONG T S, CHOI Y, et al. Anti-atherogenic effect of citrus flavonoids, naringin and naringenin, associated with hepatic ACAT and aortic VCAM-1 and MCP-1 in high cholesterol-fed rabbits[J]. Biochem Biophys Res Commun, 2001, 284(3): 681-688. DOI:10.1006/bbrc.2001.5001
[28] LEE M H, YOON S, MOON J O. The Flavonoid naringenin Inhibits dimethylnitrosamine-induced liver damage in rats[J]. Biol Pharm Bull, 2004, 27(1): 72-76. DOI:10.1248/bpb.27.72
[29] MA J X. Research progress on the pharmacological actions of emodin[J]. J Qinghai Norm Univ (Nat Sci), 2011, 27(4): 48-51.
马继雄. 大黄素药理作用研究进展[J]. 青海师范大学学报 (自然科学版), 2011, 27(4): 48-51.
[30] DALY S M, ELMORE B O, KAVANAUGH J S, et al. ω-hydroxyemodin limits Staphylococcus aureus quorum sensing-mediated pathogenesis and inflammation[J]. Antimicrob Agents Chemother, 2015, 59(4): 2223-2235. DOI:10.1128/AAC.04564-14